T.C.

ATATÜRK ÜNiVERSITESi

BiLiMSEL ARAŞTIRMA PROJELERI KOORDINASYON BİRIMi

PROJE BAŞLIĞI

Teorik ve Uygulamalı Matematik Bilimleri Sempozyumu
Proje No: FBS-2021-9965

Kongre, Sempozyum Düzenleme Projesi

SONUÇ RAPORU

Proje Yürütücüsü:

Doç. Dr. Furkan YILDIRIM
Narman Meslek Yüksek Okulu
Finans-Bankacılık ve Sigortacılık Bölümü

Araştırmacılar
Prof. Dr. Nejmi CENGIZ
Prof. Dr. Tamer UĞUR
Prof. Dr. Kürşat AKBULUT
Prof. Dr. Alper Çiltaş
Prof. Dr. Alper Cihan KONYALIOĞLU
Doç. Dr. Çağrı KARAMAN
Doç. Dr. Yeşim SARAÇ
Dr. Öğr. Üyesi Fatma SAĞSÖZ
Dr. Öğr. Üyesi Mesut KARABACAK

Dr. Öğr. Üyesi Sait TAŞ
 Dr. Öğr. Üyesi Sıdıka Şule ŞENER KILIÇ Dr. Öğr Üyesi Semra YURTTANÇIKMAZ Dr. Öğr. Üyesi Nazlı KARACA Dr. Öğr. Üyesi Şennur BAKIRTAŞ Öğr. Gör. Yakup ÇifTÇi Öğr. Gör. Yasin SANCAR Öğr. Gör. Süha GÖKALP Arş. Gör. Tuğçe KUNDURACI Arş. Gör. Merve AKTAY Arş. Gör. Yeter ÜNLÜ İdari Personel Emir Sultan GÖKKAYA

1. TEMEL BiLGiLER: Tüm bilgi alanlarını eksiksiz doldurunuz.

Kongre/Sempozyum Adı	I. Uluslararası Temel ve Uygulamalı Matematik Bilimlerindeki Güncel Gelişmeler Sempozyumu
Kongre/Sempozyum Kısa Adı	ISCDFAMS-2022
Web Sitesi Adresi	https://iscdfams.com/
Kaçıncı Kez Düzenlendiği	1
Tarihi	Başlama Tarihi: 25.05.2022 Bitiş Tarihi: 27.05.2022
Yeri	Atatürk Üniversitesi Narman Meslek Yüksekokulu
Türü	\square Ulusal \triangle Uluslararası \triangle Uluslararası Katılımlı
Düzenleyen Kurum/Birim	Atatürk Üniversitesi Narman Meslek Yüksekokulu
Destekleyen Kurum(lar)	Atatürk Üniversitesi
Etkinlik Dili/Dilleri	\boxtimes Türkçe \quad İngilizce $\quad \boxtimes$ Diğer: Tüm Diller
Kongre/Sempozyum Başkanı/ Başkanları	Üniversitemizden Yurt İçindeki Diğer Üniversitelerden Yurt Dışından T.C. Uyruklu Yurt Dışından Yabancı Uyruklu
Bilim Kurulu Üye Sayısı	Üniversitemizden: 19 Yurt İçindeki Diğer Üniversitelerden: 21 Yurt Dışından T.C. Uyruklu: 0 Yurt Dışından Yabancı Uyruklu: 68
Kabul Edilen Bildiri Sayısı	Sözlü Sunum: 133 Poster: 0 Toplam: 133
Katılımcı Sayısı	Yurt İçinden: 59 Yurt Dişından: 71 Toplam: 130
Davetli Konuşmacı Sayısı	Yurt İçinden: 3 Yurt Dışından: $6 \quad$ Toplam: 14
Davetli / Özel Oturum	\ Düzenlendi \square Düzenlenmedi
Sosyal, Kültürel Program	\square Düzenlendi \boxtimes Düzenlenmedi
Bildiri Kitabı / Özetler Kitabı	1. \square Bildiri Kitabı Özetler Kitabı Yayımlanmadı 2. \square Basilı \square CD/DVD Ortamında \square İnternet Üzerinden
Bildirilerin Dergide Yayımlanması	1. \boxtimes Yayımlanmayacak \square Yayımlanacak $\quad \square$ Yayımlandı 2. \square ISı İndekslerindeki Dergi \square Alan İndekslerindeki Dergi \square Diğer Uluslararası Dergi \square Diğer Ulusal Dergi 3. Yayımlandı İse Mahiyeti \square Tüm Bildiriler \square Seçilen Bildiriler
Bilim Kurulu Değerlendirmesi Ile Verilen Ödüller	1. \square Verildi Verilmedi 2. \square Bildiri Ödülü Sayısı: \square Sunum Ödülü Sayısı: Poster Ödülü Sayısı: Diğer Ödül Sayısı:

2. ETKİNLíĞiN TANITIMI: Toplantıın amacı, kapsamı, kaçıncı kez düzenleneceği, nerede yapılacağı ve beklenen faydalar gibi tanıtım bilgileri özetlenmelidir.

Atatürk Üniversitesi'nin desteğiyle ilk kez düzenlenen 1. Uluslararası Temel ve Uygulamalı Matematik Bilimlerindeki Güncel Gelişmeler Sempozyumu, 23 Mayıs - 25 Mayıs 2022 tarihleri arasında Atatürk Üniversitesi Narman Meslek Yüksekokulu ev sahipliğinde COVID-19 nedeniyle çevrimiçi olarak yapılacaktır. Dünyanın her köşesinden matematikçileri buluşturan bu sempozyumun programı, açılış konuşması, çağrılı ana konuşmalar, dizi konuşmalar ve genç akademisyen konuşmaları ile kısa söyleşilerden oluşmaktadır.

Uzmanlık alanı itibariyle deneyim sahibi olan davetli konuşmacılar ile başarılı akademisyenler teorik ve uygulamalı matematik konularındaki birikimlerini tüm bilim insanlarına aktarma imkanı bulmuş olacaktır. Bu sempozyumda lisans, lisansüstü öğrencileri ve bilim insanları bilgi transferi yapacakları gibi ortak çalışma yürütme şansı elde edeceklerdir. Tüm akademisyenlerin çevrimiçi olarak düzenlenen bu sempozyum ile pandemi koşullarında bir araya gelme şansı yakalayacakları gibi birlikte bilimsel çalışma yapmaya da teşvik edici bir ortam oluşturulacaktır.

Anahtar Kelimeler: Analiz ve Fonksiyonlar Teorisi, Uygulamalı Matematik, Diferansiyel Geometri, Geometri, Cebir ve Sayılar Teorisi, Topoloji, Olasılık ve İstatistik, Matematiğin Temelleri ve Matematik Lojik, Bilgisayar Bilimleri.
3. ETKINLIĞİN KONULARI: Toplantı duyurusunda ilan edilen/edilecek konular listelenmelidir.

Aşağıda belirtilen alanlarda tüm katılımcılara açık birer sunum yapılacaktır.

* Teorik Matematik (Küme Teorisi, Matematiksel Mantık, Model Teorisi)
* Cebir (Sıra Teorisi, Genel Cebirsel Sistemler, Cisim Teorisi ve Polinomlar, Değişmeli Halkalar)
* Sayılar Teorisi (Temel Sayı Teorisi, Analitik Sayı Teorisi, Cebirsel Sayı Teorisi, Aritmetik)
* Geometri (Konveks Geometri, Ayrık ve Kombinatoryal Geometri, Diferensiyel Geometri, Cebirsel Geometri, Aritmetik Geometri, Diyofant Geometri)
* Topoloji (Genel Topoloji, Cebirsel Topoloji, Diferansiyel Topoloji)
* Uygulamalı Matematik (Olasılık ve İstatistik, Sayısal Analiz, Bilgisayar Cebri, Klasik Mekanik, Parçacık Mekaniği, Sayısal Akışkanlar Dinamiği ve Isı Transferi, Diferansiyel Operatörlerin Spektral Analizi, Diferansiyel Denklemlerde Kontrol, Yöneylem Araştırması, Matematiksel Modelleme, Matematiksel Programlama)

44. ÖZEL OTURUMLAR ve DAVETLi KONUŞMACILAR: Toplantıda özel oturumlar düzenlenip düzenlenmeyeceği ve düzenlenecek ise hangi konularda olacağı belirtilmelidir. Ayrıca Toplantı davetli konuşmacıların
konuşmalarına yer verilip verilmeyeceği belirtilmeli, var ise davetli konuşmacıların kimler olduğu ve hangi konularda konuşma yapacakları belirtilmelidir.
Aşağıda isimleri ve üniversiteleri belirtilen davetli konuşmacılar, son yıllarda yaptıkları ve/veya literatürde yapılan diğer akademik çalışmalar/yayınlar/projeler hakkında tüm katılımcılara açık sunum yapacaklardır.

Açılış Konuşması:

1. Prof. Dr. Ahmet IŞIK, Kırıkkale Üniversitesi, Türkiye Mathematics and Mathematics Education
2. Prof. Dr. Arif Salimov, Bakü Üniversitesi-Azerbaycan

New Developments in the Theory of Lifts
3. Prof. Dr. Bismark Singh, Friedrich-Alexander Üniversitesi, Almanya

Optimization Models for Pandemic Response Planning
4. Prof. Dr. Bayram Şahin, Ege Üniversitesi-Türkiye

Conformal Riemannian Maps from Kaehler Manifolds to Riemannian Manifolds
5. Prof. Dr. Josef Mikesh, Palacky University-Çek Cumhuriyeti

Geodesics Mappings and Their Generalizations
6. Prof. Dr. Boaz Tsaban, Bar Ilan University-İsrail

Selection Principles in Mathematics
7. Prof. Dr. Ljubisa D.R. Kocinac, University of Nis-Sırbistan

More on Set Versions of Star Selection Principles
8. Prof. Dr. James Peters, University of Manitoba-Kanada

Good Covers for Nerve Cell Complexes
9. Doç. Dr. Murat KiRişçi, Istanbul Üniversitesi - CerrahpaşaTürkiye

On the artificial intelligence, big data, blockchain technologies in medicine
5. DÜZENLEME EKIBI: Toplantıda genel başkan, başkan, eşbaşkan gibi sorumlu görevliler ve organizasyon komisyonu üyeleri, teknik program üyeleri gibi görevlilere ait bilgiler verilmelidir.

Adı Soyadı	Unvanı	Kurumu	Organizasyondaki Görevi
Ömer Çomaklı	Prof. Dr.	Atatürk Üniversitesi	Kongre Onursal Başkanı
Abdulhalik KARABULUT	Prof. Dr.	Ağrı İbrahim Çeçen Üniversitesi	Kongre Onursal Başkanı
Bülent ÇAKMAK	Prof. Dr.	Erzurum Teknik Üniversitesi	Kongre Onursal Başkanı
Furkan Yıldırım	Doç. Dr.	Atatürk Üniversitesi	Düzenleme Kurulu Başkanı

Çağrı Karaman	Doç. Dr.	Atatürk Üniversitesi	Düzenleme Kurulu Başkan Yardımcisı
Yeşim Saraç	Doç. Dr.	Atatürk Üniversitesi	Genel Sekreter
İbrahim Karahan	Doç. Dr.	Erzurum Teknik Üniversitesi	Düzenleme Kurulu Ortak Başkanı
Abdullah Çağman	Dr. Öğr. Üyesi	Ağrı ibrahim Çeçen Üniversitesi	Düzenleme Kurulu Ortak Başkanı
Nejmi CENGIZ	Prof. Dr.	Atatürk Üniversitesi	Düzenleme Kurulu Üyesi
Kürşat AKBULUT	Prof. Dr.	Atatürk Üniversitesi	Düzenleme Kurulu Üyesi
Tamer UĞUR	Prof. Dr.	Atatürk Üniversitesi	Düzenleme Kurulu Üyesi
Alper Çil	Prof. Dr.	Atatürk Üniversitesi	Düzenleme Kurulu Üyesi
Ceren Sultan Elmalı	Prof. Dr.	Erzurum Teknik Üniversitesi	Düzenleme Kurulu Üyesi
Mustafa Bayram	Prof. Dr.	İstanbul Gelişim Üniversitesi	Düzenleme Kurulu Üyesi
Engin ÖZKAN	Prof. Dr.	Erzincan Binali Yıldırım Üniversitesi	Düzenleme Kurulu Üyesi
Murat Çağlar	Doç. Dr.	Erzurum Teknik Üniversitesi	Düzenleme Kurulu Üyesi
İbrahim Karahan	Doç. Dr.	Erzurum Teknik Üniversitesi	Düzenleme Kurulu Üyesi
Mahmut Akyiğit	Doç. Dr.	Sakarya Üniversitesi	Düzenleme Kurulu Üyesi
Seher ASLANCI	Doç. Dr.	Alanya Alaaddin Keykubat Üniversitesi	Düzenleme Kurulu Üyesi
Fatma KARAKUŞ	Doç. Dr.	Sinop Üniversitesi	Düzenleme Kurulu Üyesi
Ali ÇAKMAK	Doç. Dr.	Bitlis Eren Üniversitesi	Düzenleme Kurulu Üyesi
Sait Taş	Dr. Öğr. Üyesi	Atatürk Üniversitesi	Düzenleme Kurulu Üyesi
Mesut Karabacak	Dr. Öğr. Üyesi	Atatürk Üniversitesi	Düzenleme Kurulu Üyesi
Sıdıka Şule Şener Kılıç	Dr. Öğr. Üyesi	Atatürk Üniversitesi	Düzenleme Kurulu Üyesi
Nazlı Karaca	Dr. Öğr. Üyesi	Atatürk Üniversitesi	Düzenleme Kurulu Üyesi
Semra Yurttançıkmaz	Dr. Öğr. Üyesi	Atatürk Üniversitesi	Düzenleme Kurulu Üyesi
Fatma Sağsöz	Dr. Öğr. Üyesi	Atatürk Üniversitesi	Düzenleme Kurulu Üyesi
Şennur BAKIRTAŞ	Dr. Öğr. Üyesi	Atatürk Üniversitesi	Düzenleme Kurulu Üyesi
Süha GÖKALP	Öğr. Gör.	Atatürk Üniversitesi	Düzenleme Kurulu Üyesi
Kadirhan Polat	Dr. Öğr. Üyesi	Ağrı ibrahim Çeçen Üniversitesi	Düzenleme Kurulu Üyesi
Sibel Turanlı	Dr. Öğr. Üyesi	Erzurum Teknik Üniversitesi	Düzenleme Kurulu Üyesi
Muhammed Yiğider	Dr. Öğr. Üyesi	Erzurum Teknik Üniversitesi	Düzenleme Kurulu Üyesi
Ayşenur UÇAR	Dr. Öğr. Üyesi	Doğuş Üniversitesi	Düzenleme Kurulu Üyesi

Tuğçe KUNDURACI	Arş. Gör.	Atatürk Üniversitesi	Düzenleme Kurulu Üyesi
Merve AKTAY	Arş. Gör.	Atatürk Üniversitesi	Düzenleme Kurulu Üyesi
Yeter ÜNLÜ	Arş. Gör.	Atatürk Üniversitesi	Düzenleme Kurulu Üyesi
Olgun DURMAZ	Dr.	Atatürk Üniversitesi	Düzenleme Kurulu Üyesi
Zekai AYIK	Dr.	Harran Üniversitesi	Düzenleme Kurulu Üyesi
Süha GÖKALP	Öğr. Gör.	Atatürk Üniversitesi	Düzenleme Kurulu Üyesi
Yakup ÇiFTÇi	Öğr. Gör.	Atatürk Üniversitesi	Düzenleme Kurulu Üyesi
Yasin SANCAR	Dr. Öğr. Gör.	Atatürk Üniversitesi	Düzenleme Kurulu Üyesi
Emir Sultan GÖKKAYA	İdari Personel	Atatürk Üniversitesi	Düzenleme Kurulu Üyesi

Satırlar gerektiği kadar artırılabilir.
6. ÖNEMLI TARIHLER: Toplantı duyurusunda ilan edilen/edilecek önemli tarihleri belirtiniz.

Başlık ${ }^{4}{ }^{4}$)	
Tarih	
Toplantı İlan / Kayıt Başlangıç Tarihi	27 Aralık 2021

${ }^{(4)}$) Başlık alanında verilen ifadeler değiştirilebilir, satırlar gerektiği kadar artırılabilir.
7. ETKINLiĞíN BÜTÇE ÖZETi: Toplantının bütçe özetini beklenen gelirler ve giderleri göz önüne alarak genel hatları ile belirtiniz. Öngörülen gelirler belirlenirken destekleyen kuruluşların sağlayacağı katkılar ve katılımcılardan sağlanacak gelirler vb. tüm hususları dikkate alınız.

GELIRLER	
Tanımı/Adı	Tutar
1-Atatürk Üniversitesi Bap Desteği	
GELİRLER TOPLAMI	15.210,01 TL
GİDERLER	
Tanımı/Adı	Tutar
1. Web Sitesi Tasarımı (1 adet $\times 2.500,00 \mathrm{TL}$)	2.500,00 TL
2. Sempozyum Kitabı (1 adet $\times 3,389,84 \mathrm{TL}$)	3,389,84 TL
3. Organizasyon Bedeli (1 adet $\times 7.000,00 \mathrm{TL}$)	7.000,00 TL
TOPLAM	12.889,84 TL
KDV (\%18)	2.320,17 TL
GİDERLER TOPLAMI (KDV DAHiL)	15.210,01 TL

8. BÜTÇE KALEMLERI GEREKÇESİ: BAP Koordinasyon Biriminden talep edilen parasal desteğin her bir kalemi için gerekçe verilmelidir. Benzer nitelikte olan düşük bedelli kırtasiye gibi ortak kullanım amacına sahip tüketim malzemeleri gruplanarak ortak gerekçelendirilebilir.
9. Web Sitesi Tasarımı: Sempozyumun daha fazla kesime ulaşması için (Web site kurulumu, Ana sayfa ve slider düzenlenmesi, Web site sunucuya kurulup çalıştırılması).
10. Sempozyum Kitabı: E-Kitap İnceleme, Tashih ve Grafiker hizmetleri
11. Organizasyon Bedeli: Sempozyumun oluşturulması ve yürütülmesi esnasında kullanılacak tüm ihtiyaçlar (Teknik Destek + Video ve Fotoğraf Çekimi + Grafik Tasarım Hizmeti + Organizasyon Sekreteryası (Hizmeti) + Dijital Katılım Belgesi + Rehberlik + Açılış Organizasyonu + Duyuru Hizmeti + Resmi Yazışmalar + Kayıtların Kurgulanıp Teslim Edilmesi) belirtilmiştir.
12. TARTIŞMA ve SONUÇLAR: Projenin öneri aşamasında ortaya konulan hedeflere ne ölçüde ulaşıldığı açıkça ortaya konulmalı, ulaşılamayan hedefler var ise bunların gerekçeleri de tartışılmalıdır. Organizasyon başarımı, etkinliğe gönderilen bildiri sayısı, kabul edilen bildiri sayısı, katılımcı sayısı ve niteliği gibi hususları da göz önünde bulundurunuz.

Atatürk Üniversitesi'nin desteğiyle ilk kez düzenlenen 1. Uluslararası Temel ve Uygulamalı Matematik Bilimlerindeki Güncel Gelişmeler Sempozyumu, 23 Mayıs - 25 Mayıs 2022 tarihleri arasında Atatürk Üniversitesi Narman Meslek Yüksekokulu ev sahipliğinde COVID-19 nedeniyle çevrimiçi olarak yapılmıştır.

Bu sonuç raporunda ise ara rapordan sonra yapılan çalışmalar belgeleri ile sunulacaktır. Sempozyumumuz yukarıda belirtildiği gibi 40'ı ülkemizden 68'i yurt dışından oluşan toplam 128 kişilik güçlü bir Bilimsel Kurulla çalışmaktadır. Projenin kabulünden itibaren, öncelikle sempozyumumuz web sitesi hazırlanmış ve dünyanın çeşitli yerlerindeki matematikçilere ulaşılmıştır. Bunun sonucunda ise başvuru süresi boyunca sempozyumumuza toplam 197 başvuru olmuştur. Bu başvurulardan ise özenli hakem değerlendirmesinden sonra 133'ü sempozyum için uygun bulunmuştur. 133 başvurunun 124'ü sunumunu başarılı bir şekilde gerçekleştirmiştir. Sempozyum bildiri kitabı ise https://iscdfams.com/ adresinde https://ekitap.atauni.edu.tr/index.php/1st-international-symposium-on-current-developments-in-fundamental-and-applied-mathematics-sciences-iscdfams-2022-abstract-and-full-text-symposium-book/ bağlantısında ve bu belgenin sonunda yer almaktadır.

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

ABSTRACT AND FULL TEXT SYMPOSIUM BOOK

Editors:
Assoc. Prof. Dr. Furkan YILDIRIM
Asst. Prof. Dr. Fatma SAĞSÖZ

Eser Adı:
 1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022) ABSTRACT AND FULL TEXT SYMPOSIUM BOOK

Editors:

Assoc. Prof. Dr. Furkan YILDIRIM
Asst. Prof. Dr. Fatma SAĞSÖZ

Yayınlar Yönetmeni:

Doç. Dr. Bünyamin AYDEMİR

Yayın Kurulu: Prof. Dr. Ahmet SARI, Prof. Dr. Ali UTKU, Prof. Dr. Bülent ÇAVUŞOĞLU, Prof. Dr. Erdinç ŞIKTAR, Prof. Dr. Hakan Hadi KADIOĞLU, Doç. Dr. Bünyamin AYDEMİR, Doç. Dr. Hasan Tahsin SÜMBÜLLÜ

Dizgi ve Tasarım: Abubekir KALE

Atatürk Üniversitesi Yayınları No: 1298

ISBN: 978-625-7086-54-7

Erişim Adresi: https://ekitap.atauni.edu.tr

Atatürk Üniversitesi Yayınevi Koordinatörlüğü

Sertifika No: 42021
Adres: Prof. Dr. Fuat Sezgin Kütüphanesi Okuma Salonları Binası Zemin Kat
Kampüs-Yakutiye/ ERZURUM
E-posta: atayayinevi@atauni.edu.tr
Telefon: 04422316280

© © 0
 atayayinevi

Erzurum 2022 © Copyright Atatürk Üniversitesi Yayınevi
Bu kitapta yer alan tüm yazıların dil, bilim ve hukuk açısından sorumluluğu yazarlarına aittir. Eserin her hakkı anlaşmalı olarak Atatürk Üniversitesi Yayınevi Koordinatörlüğüne aittir. İzinsiz yayınlanamaz. Kaynak gösterilerek alıntı yapılabilir.

ATATÜRK
ÜNIVERSİTESİ
YAYINLARI
ATATURK
UNIVERSITY
pUBLICATIONS

CONTENTS

PRESENTATION 14
TAKDİM 15
KEYNOTE SPEECH. 17
Mathematics and Mathematics Education 18
Ahmet Işık
INVITED SPEAKERS 25
Optimization Models for Pandemic Response Planning 26
Bismark Singh
New Developments in the Theory of Lifts. 27
Arif Salimov
Geometric Realization of Path Cycles as Flow Cycles. 28
James Peters
Conformal Riemannian Maps from Kaehler Manifolds to Riemannian Manifolds 30
Bayram Şahin
Selection Principles in Mathematics 33
Boaz Tsaban
On the artificial intelligence, big data, blockchain technologies in medicine 34
Murat Kirişşi
Geodesics Mappings and Their Generalizations 42
Josef Mikesh
More on Set Versions of Star Selection Principles 44
Ljubisa D. R.Kocinac
ABSTRACTS. 45
An Existence Study for a Tripled System with P-Laplacian Involving Ф-Caputo Derivatives 46
Hamid Beddani
Analysis and Applications of the Proportional Caputo Derivative and Integral. 48
Abdellatif Boutiara
On a Solvable System of Rational Difference Equations of Higher Order. 49
Merve Kara, Yasin Yazlik
On Eight Solvable Systems of Difference Equations in Terms of Generalized Padovan Sequences 50
Merve Kara, Yasin Yazlik
On The Boundary Observability and Controllability of the Wave Equation in Some Non-Cylindrical Domains. 52
Seyf Eddine Ghenimi, Abdelmouhcene Sengouga
The Attitudes and Self-Efficiencies of High School Students Continued the Distance Mathematics Course Against Distance Education During the Covid-19 Pandemic 53
Başak Bor Akbulut
Existence and Uniqueness Results for Nonlinear Hybrid İmplicit Caputo-Hadamard Fractional Differential Equations 55
Chahra Kechar, Abdelouaheb Ardjouni
On The Asymptotic Behaviour of a Non-Local Eigenvalue Problem 56
Ahlem Yahiaoui, Senoussi Guesmia, Abdelmouhcene Sengouga
On The Controllability of Some Systems on Lie Groups 57
Okan DUMAN
Solving the Absolute Value Equation Based on a New Smoothing Function. 58
Randa Chalekh, EL Amir Djeffal
Schauder and Banach Fixed Point Theorem for Semilinear Fractional Problem 59
Chaima Saadi, Hakim Lakha, Kamel Slimani
Growth of Solutions of Linear Fractional Differential Equations with Polynomial Coefficients 60
Saada Hamouda, Sofiane Mahmoudi
Blow up of solution of a nonlinear wave equation with general source anddamping terms 62
BOULMERKA Imane
Non autonomous iterative differential inclusion 63
Ghalia Samia, Doria Affane
Growth of Solutions of Linear Fractional Differential Equations with entire Coefficients 64
Saada Hamouda, Sofiane Mahmoudi
Dynamical Behavior of a Differential-Algebraic System with Fractional Order 67
Nadjah Kerioui
Historical-Philosophical Development and Teaching of Mathematical Objects 68
Fatih Taş
Some Aspects of Interchanging Difference Equation Orders 69
Engin Özkan, Anthony G. Shannon
Universal Covering of a Lie Group 70
Merve Ersoy, Eyüp Kızıl
Semi Continuous Perturbations for Nonconvex Sweeping Process. 71
Hanane Chouial, Mustapha Fateh Yarou
Simpson Type Inequalities for Katugampola Fractional Integral 72
Zeynep Şanlı
A Note on L and R Topologies 73
Kadirhan Polat
Non-Convex Valued Perturbation of First-Order Problems with Maximal Monotone Operators 74
Fatima Fennour, Soumia Sa"idi
A Dynamic Electroviscoelastic Problem with Thermal Effects 75
Sihem Smata, Nemira Lebri
On Unique Solvability and Picard's Iterative Method for Absolute Value Equations 77
Nassima Anane, Mohamed Achache
Limit Cycles of a Class of Planar Polynomial Differential Systems 78
Amel Boulfoul, Nassima Debz, Abdelhak Berkane
A Derivative-Free Algorithm for Continuous Global Optimization 79
Raouf Ziadi
Diophantin Approximation by Prime Numbers of a Special Form 81
Tatiana Todorova
Cohen Positive Strongly P-Summing M-Homogeneous Polynomials from a Tensor Viewpoint 83
Halima Hamdi, Belacel Amar
Analysis of a Electro-Elastic Contact Problem with Wear and Unilateral Constraint 84
Laldja Benziane, Nemira Lebri
Comparison of Two Effective Methods on Numerical Solutions of Differential Equations 86
Onur Karaoğlu, Özlem Soylu
A Theoretical Synthesis of Philosophy of Mathematics and Mathematical Beliefs and Application to Mathematics Education 87
Fatih Taş, Pınar Akyıldız
Truncated Condition for Second Order Perturbed Sweeping Process 89
Imene Mecemma, Sabrina Lounis, Mostapha Fateh Yarou
On Quasi Ideals of Nearness Semigroups 90
Özlem Tekin
Berge Equilibrium in Random Bi-Matrix Game 91
Sabiha Djebara, Achemıne Farida, Zerdanı Ouiza
The Dirichlet Problem for the Polyanalytic Equations in a Ring Domain 92
İlker Gençtürk
Resolution a Problem of Quantum Mechanics in Fractional Dimensional Space 93
Hadjer Merad, Míhamed Hadj Moussa
Locally I- Connectedness 94
Selahattin Kılınç
A Finite Difference Scheme for Singularly Perturbed Neutral Type Differential Equations 95
Yılmaz Ekinci, Erkan Cimen, Musa Cakir
A Numerical Approach for System of Ordinary Differential Equations 96
Şevket Üncü, Erkan Cimen
Solving Abel's Integral Equation by Kashuri Fundo Transform 97
Fatma Aybike Çuha, Haldun Alpaslan Peker
Existence and Uniqueness of Positive Periodic Solutions for a Kind of First Order Neutral Functional Differential Equations with Variable Delays 99
Lynda Mezghiche, Rabah Khemis, Ahl`eme Bouakkaz Under Truncated Random Data, Nonparametric Relative Error Estimation Via Functional Regressor Using The \(k\) Nearest Neighbors Smoothing 100 Nadjet Bellatrach, Wahiba Bouabsa An Existence Result for a Class of Nonconvex Second Order Differential Inclusions 102 Nora Fetouci, M. F. Yarou Differential Equations of Divergence Form by Topological Degree in Musielak-Orlicz- Sobolev Spaces 103 Mustapha Ait Hammou Immigration and Qualitative Behavior of a Two-Dimensional Discrete-Time Model 104 Seval Işık, Figen Kangalgıl, Feda Gümüşboğa Existence, Uniqueness and Stability Results for a Neutral Mackey-Glass Type Delay Differential Equation with an Iterative Production Term 105 Marwa Khemis, Ahl`eme Bouakkaz
A Numerical Approach for a Class of Singularly Perturbed Differential-Difference Equation 106
Erkan Cimen
Solving One-Dimensional Bratu's Problem Via Kashuri Fundo Decomposition Method 107
Fatma Aybike Çuha, Haldun Alpaslan Peker
Construction of novel analytical solutions of two space-time fractional models with the extended expansion technique 109
Gizel Bakıcıerler Emine Mısırlı
Darboux Frame with Respect to Generalized Fermi-Walker Derivative 110
Ayşenur Uçar, , Fatma Karakus, Yusuf Yaylı
Generalized Fermi Derivative on Surfaces in Euclidean 3-Space 111
Ayşenur Uçar, Fatma Karakus
Generelized Fermi Derivative with Regart to Hypersurfaces 112
Ayşenur Uçar, Fatma Karakus
Centered Polygonal Numbers and Polygonal Numbers 113
Umit Sarp
B-Spline Method for Solving Fractional Delay Differential Equations 114
Muhammed Syamnot, Mwaffag Sharadga, Ishak Hashim
Generalized Fibonacci Polynomials Associated with Finite Operators 116
Emrah Polatlı
Existence Problem for First Order Evolution Inclusion 118
Nouha Boudjerida, Doria Affane, Yarou Mustapha Fateh
Simultaneously Square and Centered Square Numbers Related with Pell and Lucas Numbers 119
Ahmet Emin
The Drazin Inverse for Closed Linear Operators 120
Mohammed Drissi-Alami, Mohammed Kachad
Durrmeyer-Type Generalization of Some Linear Positive Operators 121
Selin Erdal, Kadir Kanat, Melek Sofyalıoğlu
Local Existence of Solutions for a Quasilinear Hyperbolic Equation Involving the \$P-\$Laplacian Operator 122
Abir Bounaama
A New Generalization of the Min and Max Matrices 123
Nazlıhan Terzioğlu, Can Kızılateş
Some Fixed Point Results in Soft Fuzzy Metric Spaces 124
Merve İnce, Ferhan Şola Erduran
A Generalized Exponential Expansion Method to Simulate Two Third-Order Kdv-Type Equations 126
Riadh Hedli, Fella Berrimi
Comparative Numerical Study Between Line Search Methods and Minorant Functions in Barrier Logarithmic Methods for Linear Programming 128
Assma Leulmi, Soumya Leulmı
Local Linear Estimation of a Conditional Quantile for Randomly Censored Functional Depandent Data 129
Sarra Leulmi, Farid Leulm
Modelling of Pancreatic Beta-Cells with Gap-Junction 130
Murat An, Vehbi Yıldırım
Some Density Properties in Bitopological Context 131
Necati Can Açıkgöz, Ceren Sultan Elmalı
On Integral Bases and Monogeneity of Certain Pure Number Fields Defined by $\mathbf{\$ X} \mathbf{X}^{\wedge}\left\{\mathbf{P}^{\wedge} \mathbf{R}\right\}$-A 132
Omar Kchit, Hanan Choulli, Lhoussain El Fadil
Mathematical Model of COVID-19 with Imperfect Vaccine and Virus Mutation 134
Ceren Gürbüz, Sebaheddin Sevgin
Existence Result of a Capacity Solution for a Nonlinear Parabolic-Elliptic System 136
Ibrahim Dah1, Moulay Rchid Sıdı Ammı
Some Fixed Point Theorems for a Generalized Cyclic (A,F,Ф,)-Contractive Mapping in B-Metric-Like Spaces 137
Souheib Merad
Analyzing Neimark-Sacker Bifurcation and Stability for a Discrete-Time Prey- Predator Model with Allee Effect 138
Nihal Öztürk, Figen Kangalgil, Nilüfer Topsakal
On The Relationship Between the Degree of Coecients and the Growth of Solutions of Ultrametricq-Dierence Equations 140
Houda Boughaba, Zerzaihi Tahar
Numerical Solution of Simple Mechanical Systems with Deep Learning 141
Tayfun Ünal, Ayten İrem Işık, Unver Çiftçi
Uniqueness of Solution of an Inverse Problem for the Ultrahyperbolic Schrödinger Equation 142
Özlem Kaytmaz
Complexity Analysis of a Primal-Dual Interior-Point Method for Convex Quadratic Optimization Based on a New Hyperbolic Kernel Function 144
Youssra Bouhenache, Wided Chikouche, Imene Touil
Examining the Perceptions of Anatolian Vocational High School Students on Mathematics Through Metaphors 145
Ömer Demirci, Özlem Demirci
Relative Cohomology Spaces for Some $\$ \mid$ Mathfrak $\{\mathbf{O s p}\}(\mathbf{N} \mid 2) \$$-Modules 147
Wafa Mtaouaa, Didier Arnal, Mabrouk Ben Ammar, Zeineb Selmi
Fixed-Point Theorems in Extended Fuzzy Metric Spaces Via Some Fuzzy Contractive Mappings 148
Meryem Şenocak, Erdal Güner
Solvability of an Inverse Problem for a Kinetic Equation on a Riemannian Manifold 150
İsmet Gölgeleyen
A Finite Difference Method Based on the Operator for the Numerical Solution of an Inverse Source Problem Backward in Time 151
Ali Ugur Sazaklioglu
Groups Whose Proper Subgroups of Infinite Rank are Hypercentral-By-Finite 152
Amel Dilmi, Nadir Trabelsi
Examination of Mathematics Questions in Secondary Education Transition Exam According to Revised Bloom Taxonomy and Middle School Mathematics Curriculum Objectives 153
Ali Sabri İpek, Zeynep Büşra Üzümcü
Generalized Spherical Fuzzy Hamacher Aggregation Operators 154
Elif Güner, Halis Aygün
Inquiry-Based Learning: A Bibliometric Analysis 156
Seher Aslanci
Homotopy and Descriptive Homotopy in Computational Proximity 157
Tane Vergili, James Francis Peters
Examination of Preservice Mathematics Teachers' Written Expression Skills for Geometric Objects: Student Diaries 158
Pakize ÇETİN Okan KUZU
Examination of Preservice Teachers' Mathematical Thinking and Modeling Skills 159
Zeynep İğdeli, Okan Kuzu, Osman Çil
Concept Images and Misconceptions of Preservice Mathematics
Teachers about the Angles and Triangles Concepts 160
Esin ŞİMŞEK ALTIPARMAK Okan KUZU
On The Cosine Curve as 4th and 6th Order Bézier Curve in E ${ }^{2}$ 161
Şeyda Kıliçoğlu
Existence and Multiplicity Result for General Steklov Problem 162
Mariya Sadiki, Belhadj Karim
A Solution Algorithm for an Inverse Problem for the Kinetic Equation Which Involves Poisson Bracket 163
Muhammed Hasdemir, Ismet Gölgeleyen
A Characterization of Open Distance Pattern Uniform Chordal Graphs and Distance Hereditary Graphs 164
Bibin K Jose
Associated Curves of a Framed Curve in Euclidean 3-Space 166
Zeynep Bülbül, Mustafa Düldül
A New Approach Tubular Surface with a New Frame in G3 167
Gökhan Mumcu, Ali Çakmak, Tülay Erişir, Sezai Kızıltuğ
Approximate Controllability Results for Caputo Fractional Volterra-Fredholm Integro-Differential Systems of Order $\mathbf{1}<\mathbf{R}<\mathbf{2}$ 168
M. Mohan Raja, V. Vijayakumar
Parallel Transported Along Dual Lorentzian Spacelike and Timelike Curves 169
Fatma Karakuş, Tevfik Şahin, Yusuf YAYLI
Uniform Well-Posedness and Stability for Fractional Navier-Stokes Equations with Coriolis Force in Critical Fourier-Besov-Morrey Spaces 170
Ahmed El Idrissi, Brahim El Boukari, Jalila El Ghordaf
Symmetric Functions for (P,Q)-Numbers and Pell Lucas Polynomials 172
Meryem Bouzeraib, Ali Boussayoud
Existence and uniqueness results for Hilfer fractional integro-differential equation 173
Rima Faizi
On Predictors of Partial Parameters Under A Partitioned Linear Model and Its Reduced Models 174
Melek Eris Buyukkaya, Nesrin Güler, Melike Yiğit
Optimal Control of a Fractional SIR Model Under the Effect of Nonlinear Incidence and Recovery Rates 175
Derya Avcı, Fatma Soytürk
Existence and Uniqueness Results for a Revisited Nicholson's Blowflies Model with Two Different Variable Delays and a Nonlinear Harvesting Term 177
Ahlème Bouakkaz, Rabah Khemis
Recursive Double Kernel Estımator of the Conditional Quantıle for Functional Ergodic Data 178
Imane Bouazza, Fatima Benziadi, Toufik Guendouzi
General Decay of Solutions in One-Dimensional Porous-Elastic System with Memory and Distributed Delay Term with Second Sound 179
Fares Yazid, Fatima Siham Djeradi
Some New Results on Periodic Solutions for a Periodic Delay Hematopoiesis
Model with a Unimodal Production Function 180
Rabah Khemis, Ahlème Bouakkaz
Existence, uniqueness and stability of solutions for a first order iterative functional differential equation 181
Safa Chouaf, Rabah Khemis, Ahl`eme Bouakkaz
Some Fixed Point Theorems on O-Complete Metric Spaces 182
Kübra Özkan
On Deformed Lifts 183
Seher Aslanci
An Examination of the Conceptual Knowledge of Teacher Candidates in the Elementary Mathematics Program Regarding The Concept of Ratio 184
Berna Yıldızhan, Erhan Ertekin
Investigating the Impact of Bariatric Surgery on Lipid and Glucose Absorption Via Mathematical Modeling 186
Sedanur Köksal, Vehbi Yıldırım
Jacobi Last Multiplier Method for Optimal Growth Model with the Environmental Asset 188
Gülden Gün Polat
A Pointwise Carleman Inequality for the General Ultrahyperbolic
Schrödinger Equation 189
Özlem Kaytmaz
An Approach to the Diophantine Equations with Integer Sequences 191
Abdullah Çağman
Fekete-Szeg"O Problem for a Subclass of Bi-Univalent Functions Associated with Gegenbauer Polynomials 192
Murat Çağlar, Mucahit Buyankara
Bibliometric Analysis of Scientific Studies on "Noticing Skill" in Mathematics Education 193
Ali Ercan Özdemir, Ercan Dede
Hill type estimator of the tail index for randomly censored heavy-tailed data:
Application to the estimation of the mean 194
Nour Elhouda Guesmia
Reflections of Developed Problem Posing Based Active Learning Activities in the Teaching Process: Example of Fractions 195
Hatice Polat, Merve Özkaya
Receiving Student Opinions within the Scope of Geometry Lessons Taught Using Activities Regarding Different Demonstration-Performance Methods 197
Şükrü İlgün, Esra Altıntaş, Sümeyye Güneş
Examining Secondary School 7th Grade Mathematics Activities within the Scope of Harezmian Education Model and Obtaining Students' Opinions 198
Şükrü İlgün, Esra Altıntaş, Sümeyye Güneş
A New Primal-Dual Interior-Point Algorithm for Linear Programming 199
Derbal Louiza, Kebbiche Zakia
FULL TEXTS 201
Comparative Theoretical and Practical Study Of Some Imaging Algorithm 202
Soulef Bougueroua, Noureddine Daili
Some Completely Monotonicity Properties and Related Inequalities Involving k-Trigamma and k-Tetragamma Functions 214
Emrah Yıldırım
Generating Matrix and Sums of Hyperbolic Fibonacci Sequnce 220
Sait Taş
COMMITTEES 227
SCIENTIFIC PROGRAM 243

PRESENTATION

Dear Participants,
We are proud and happy to host you at the 1st International Symposium on Current Developments in Basic and Applied Mathematics Sciences, with online access facility held at Atatürk University in Erzurum.

Mathematics has a vital role in every aspect of life, especially in science and technology. Mathematics is an integral part of attempts to have a better understanding of the world and ourselves.

Considering the place of mathematics in our lives, it is essential to follow the developments in this field closely in order to keep up with the changes in a constantly developing and changing world.

For example, the concepts of innovation and sustainability in today's world of science enable parallelism with the development of both theoretical and applied fields of mathematics.

In this context, the aim of our symposium is to create a platform where scientists from different fields from all over the world can share their experiences and to provide a lively discussion of the most up-to-date topics in the related fields of mathematics at advanced levels.

In ISCDFAMS 2022, which we organized for the first time, a total of 141 oral presentations, 8 of which will be by invited speakers, will be presented in 8 sessions in 3 parallel halls on different branches of mathematics for 3 days.
We would like to express our most sincere thanks and gratitude to Prof. Dr. Ömer ÇOMAKLI, the rector of Atatürk University, Prof. Dr. Bülent ÇAKMAK, the rector of Erzurum Technical University and Prof. Dr. Abdulhalik KARABULUT, the rector of Ağrı İbrahim Çeçen University, for their support. Correspondingly, we would also like to thank Scientific Research Projects Coordinatorship, Corporate Communications Directorate, Computer Science Research and Application Center Directorate and Publishing House Directorate of Atatürk University.

Finally, we would like to thank the members of the organizing committee and scientific committee who contributed to the coordination of this event, the invited speakers and all the invaluable scientists who participated with their papers.
We wish our symposium to be beneficial and productive, and we offer our sincere respects.

Assoc. Prof. Dr. Furkan YILDIRIM
Symposium Chair

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

TAKDİM

Saygıdeğer Katılımcılar,
Erzurum'da Atatürk Üniversitesinde düzenlenen I. Uluslararası Temel ve Uygulamalı Matematik Bilimlerinde Güncel Gelişmeler Sempozyumunda sizleri online erişimle ağılamaktan gurur ve mutluluk duyuyoruz.

Matematik hayatın hemen hemen her alanında, özellikle bilim ve teknoloji alanında hayati bir role sahiptir. Matematik, dünyayı ve kendimizi anlama girişimlerinin ayrılmaz bir parçasıdır. Matematiğin hayatımızdaki yeri dikkate alındığında, sürekli gelişen ve değişen bir dünyada değişimlere ayak uydurabilmek için bu alandaki gelişmeleri yakından takip etmek şarttır.
Örneğin, günümüz bilim dünyasında inovasyon ve sürdürülebilirlik kavramları, matematiğin hem teorik hem de uygulamalı alanlarının gelişimi ile paralellik göstermektedir.

Bu bağlamda sempozyumumuzun amacı, dünyanın her yerinden farklı alanlardan bilim insanlarının deneyimlerini paylaşabilecekleri bir platform oluşturmak ve matematiğin ilgili alanlarındaki en güncel konuların ileri seviyelerde canlı bir şekilde tartışılmasını sağlamaktır.

İlkini düzenlediğimiz ISCDFAMS 2022' de 3 gün boyunca matematiğin farklı dallarını içeren konularda, 3 paralel salonda toplam 8 oturumda 8 'i davetli konuşmacılar tarafindan olmak üzere toplam 141 sözlü bildiri sunulacaktır.

Sempozyumumuzun düzenlenmesinde desteklerinden dolayı Atatürk Üniversitesi Rektörü Sayın Prof. Dr. Ömer ÇOMAKLI' ya, Erzurum Teknik Üniversitesi Rektörü Sayın Prof. Dr. Bülent ÇAKMAK' a ve Ağrı İbrahim Çeçen Üniversitesi Rektörü Sayın Prof. Dr. Abdulhalik KARABULUT' a teşekkür ve şükranlarımızı sunarız.
Ayrıca Atatürk Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğüne, üniversitemiz Kurumsal İletişim Direktörlüğüne, üniversitemiz Bilgisayar Bilimleri Araştrma ve Uygulama Merkezi Müdürlüğüne ve üniversitemiz Yayınevi Müdürlüğüne teşekkürlerimizi sunarız.
Son olarak bu etkinliğin gerçekleşmesinde emeği geçen düzenleme kurulu ve bilim kurulu üyelerine, davetli konuşmacılara ve bildirileriyle katılım sağlayan tüm değerli bilim insanlarına teşekkür ederiz. Sempozyumumuzun faydalı ve verimli geçmesi dileğiyle en içten saygılarımızı sunarız.

Doç. Dr. Furkan YILDIRIM
Sempozyum Başkanı

ATATÜRK
ÜNIVERSİTESİ
YAYINLARI
ATATURK
UNIVERSITY
pUBLICATIONS

KEYNOTE SPEECH

MATHEMATICS AND MATHEMATICS EDUCATION

(Symposium Opening Speech)

Ahmet IŞIK ${ }^{1}$
${ }^{1}$ Kirikkale University, Kirikkale, Türkiye, isikahmet@kku.edu.tr

Erzurum has been a fortress for the Turkish nation throughout history. It is the impenetrable border of the east, the confidant city of trust, hope and success. Erzurum is a city that no foreign county managed to subjugate, like the Palandöken mountain which stands even under difficult conditions. Erzurum is a city that shows the dignity of TURKs to the world with its resistance to the occupation forces in the national liberation struggle. As known, Erzurum is a city where history was rewritten on 23 July 1919. It also locates a university which makes the city an attraction for university education since 1956s.

Dear Rectors,
Dear Deans,
Dear Instructor Scientists,
Dear Young Participant academics and
Dear Press Members
As an academic who is proud to be from Erzurum and Atatürk University, I would like to thank you for honoring the "1st International Symposium on Current Developments in Fundamental and Applied Mathematics Sciences" (ISCDFAMS-2022), organized for the first time with the support of Atatürk University.

First of all, I would like to thank the General Chair of the Congress Assoc. Prof. Dr. Furkan YILDIRIM, and all the organising committee members who contributed to the symposium and I hppe such events will continue.

To begin with, I feel the need to limit the relationship between the title of my talk, "Mathematics and Mathematics Education", and what I will say. Both the concepts of Mathematics and Mathematics Education have a structure that will deeply affect the education of thousands of young people and therefore the future of the country. I know that it is impossible to solve the problems brought up by this structural phenomenon with a symposium opening speech.

In addition, since a part of this speech is not the result of scientific research or data, and it is based on scientific life and experience, it is clear that we will not be able to put forward some problems that may arise as a result of scientific investigations, with a scientific aspect, and we willt beun able to propose scientific solutions. Therefore, I should underline that my statements in general are my personal views and they are not scientific.

As of 1998, the concepts of Mathematics - Mathematics Education and Mathematician - Mathematics Educator in our country have caused vicious conflicts.How come?

In the first studies on the restructuring of the Faculties of Education, a research was carried out such as giving the functions of the Faculties of Science, Letters and Arts and Sciences and Education faculties to their owners. Was this the right approach, I leave it up to you to decide. Even going further, it was decided that MAJOR courses in Education faculties should be given from Major Faculties, considering that the faculty members in Education Faculties had a doctorate degree in the relevant major which is education, ignoring that they were associate professors in the same as Field faculties. As it will be remembered, during the $3,5+1,5$-year education period, the courses of the first 3.5 years of education faculties were given by the field faculties that took a while, and with this decision, the discussions of Mathematician and Mathematics Educator created a crisis in the academic field. There have been such crises in the past. For example, pre- crisis mathematics and post- crisis mathematics discussions. At that time, the controversy was so heated that Diderot asked Euler to provide a mathematical proof of the existence of God.

Dear participants;
It is also worth noting that, although the curriculum of the newly opened Foundation, Private or State universities is determined according to today's conditions, the courses of Mathematics and Mathematics Education departments or mathematics and other basic science departments are few in their curricula. It is seen that there is a tendency to social areas persistently.

Whereas:
(K, Cevat, in his 1996 study titled Mathematics and Economics). He states that the difference in development between the USA and European countries is due to the fact that European countries turned to factories and the United States of America turned to basic sciences after the Second World War.

It should not be overlooked that there are three fields of science that have not lost their influence and necessity in the world of science:

1. Medical sciences, 2. Basic sciences, 3. Educational sciences.

Because these areas have been and will stand as long as human being exists. The basic science fields are mathematics, physics, chemistry and biology. From this, it is understood that we need basic sciences in order to sustain our current life better, to have a better understanding of what is happening around, and to better perceive the universe we live on.

From this perspective, as just touched upon, it is a fact that the basic building blocks in the construction of the future of the world are basic science and engineering sciences, which are the practice of science, especially applied mathematics and accordingly computer technology.

Because knowing and doing mathematics is a privilege.
The main thing is to produce new information by structuring this information.

A simple example:

Just as someone who can calculate the area of a parallelogram region and the circumference of a circle can infer the area of the circle himself.

While questioning ourselves and nature, especially by using the language of mathematics push the limits of our minds.

Tymoczko, one of the philosophers of the last years, explained the nature of mathematics in a study he made.

Even the existence of mathematics alone points to the important limits that the human mind can reach. (Tymoczko, 1998).

Again, while discussing what mathematics is in European countries in the 1950s and in our country in the 1990s, mathematics and technology, mathematics and art:

Jerry P. King, the author of the book The Art of Mathematics (TÜBİTAK publications, 1992), asked his wife to emphasize the art he saw at a moment when he was looking directly at his wife's face with love while eating on a night when the moonlight was perfect.
"You're more beautiful than any woman I've ever seen"
says. At that moment, when his wife turned and looked at him, thankfully my wife did not think like a mathematician,

What would he have thought?
He would say my compliment was nonsense, untrue. Being more beautiful than all other women he had seen, he had to be more beautiful than himself, which was impossible. In other words, if there is an element in a set, it is unique. Or, it was unthinkable that a wrong situation such as accepting the divisibility of a number other than zero would be divisible by zero.

Now, Let's try to make sense of mathematics and mathematics education, which does not have a single definition.

Mathematics is the science of space and quantity, at the same time, mathematics is a language of reality and an art in itself. Mathematics is a communication skill. Or, it is the common name of sciences that examine the properties of quantities on the basis of numbers and measures, such as arithmetic, algebra, geometry.

Since mathematics is a science based on numbers and measurement, it examines abstract entities and the relations between them. These reviews are based on reasoning.

Mathematics, if viewed correctly, has not only truth, but also extraordinary beauty. It is such a beauty that it is cold, intolerant and harsh, like a statue. He does not care for any part of our weaker nature, he does not care for the magnificent ornaments of paintings and music. Yet he is extraordinarily pure and gifted with a ruthless perfection that only the greatest art can display (Bertrand Russell).

Mathematics education is a system of teaching and learning of mathematics based on a method, technique or a strategy.

Or
It is an effort to understand the nature of mathematics. It can also be considered as an effort to teach what and how.

In the historical process of humanity, we, as mathematicians, have tried and are trying to develop new techniques and methods in teaching mathematics, as well as establishing new theorems in order to evaluate the Field and Field Education together, as in the concepts of Education-Teaching. These techniques may vary according to the skill of the teacher and the learner. For instructors who are authorised to teach concepts, each area of expertise may need a different teaching method in its own branch.

Considering the concepts of mathematics and mathematics education, which do not have a single definition, let's briefly review the conceivable situations.

For a philosopher, the question why mathematics is attractive may come to mind, as well as the question why the language of the universe was written with mathematics (Shapiro, 2000).

Why the practice of abstract results of mathematics to concrete concepts is so obvious.

Despite being so abstract, how does mathematics not fall into a vacuum?
Are mathematical truths absolute truths?
As if he knew about Shapiro's testimony and other judgments,
The famous physicist Oppenheimer, one of the architects of the atomic bomb, said at a conference that today's philosophers do not know mathematics, and even one step further, that their mathematicians do not know mathematics. It is not clear in Oppenheimer's statement whether he meant that mathematicians lacked technical knowledge or simply did not mean that mathematicians did not really understand the essence of what they were dealing with. Here, in my opinion, the probability of emphasizing the technical side is low.

Because 20th century mathematics has been the golden age of mathematics. So what Oppenheimer's means is the nature and nature of mathematics.

Actually, the question what mathematics is, is a very difficult question in the philosophy of mathematics.

Indeed, if you ask a physicist what physics is or a historian what history is, it will not be difficult to answer. However, if you ask a mathematician what mathematics is, the relevant person d can rightly say that he does not know the answer, and this answer cannot prevent him from being a mathematician (Barrow, 2001; 1).

The most important feature that distinguishes mathematics from other sciences is that it is a completely human product. In other words, if there were no human beings, there would be physics, chemistry, biology, geology and astronomy, but there would be no such thing as mathematics (Kart, 1996)

Not knowing what mathematics is should not mean not knowing mathematics.

But I am an academic who does not believe that someone who does not know mathematics can and will do mathematics education, which we tested in various exams.

ESPECIALLY; Since the associate professor exams are exams in which the scientific field is signed, academics with insufficient infrastructure in the relevant discipline should be much more careful. Just because the associate professor application score is more than 100 points, I can't understand why those who

have nothing to do with the field have some expectations from the related field, such as applying to an associate professor position from an unrelated branch.

Because; What I will say now should be considered in the academic field. We can gather the reasons why teaching and learning mathematics is difficult under the following four items.

1. The absence of fairy tales in mathematics
2. It is a problem to use mathematical intelligence at any time (Kart, C. 1996)
3. The instructor has not sufficiently assimilated the concepts to be taught
4. The learner has not sufficiently assimilated the concepts he thinks he has learned (IŞIK, A., 2002)

Unless we bring up the negative situations we live in, we will not be able to reach the real truths.

Example of teaching the multiplication of two numbers to third grade primary school students.

I have always wondered about teaching mathematics to a prospective classroom teacher who stated that the sound produced when two eggs hit each other is the multiplication of two numbers.

Or
217
$+29$

507

I present you the mathematical knowledge and skills of someone who finds the sum of the numbers 507 and claims that the result is correct. It is really sad that someone with or without this information has high expectations from different fields.

In every quarter century we live in, the importance of education and knowledge is increasing rapidly. From this point of view, it becomes clear why mathematics education and learning mathematics, which are directly related to technology and the quality of living standards, are important. Because without mathematics education, it is not easy to talk about development, economy, science and technological progress in a country. The applicability of learning mathematics, acquired mathematical knowledge and mathematical thinking should be embodied if possible and explained with examples without creating mathematics anxiety (Işık, A., Çiltaş, A. \& Bekdemir, M., 2010).

It is enough to look at the environment a little carefully to see the mathematical system in every area of our lives. It is not possible to be a member of a developed democratic society, either today or tomorrow, without mathematical literacy, based on the idea that mathematics, which emerged as a result of the collaboration of mathematicians and electronics, has become more and more perfect (Hardy, G. 999). Because many civilizations, from industry to technology, are indebted to mathematics (Işık, A. \& Bekdemir, M, 1998).

In this case, wouldn't the following question come to mind from 7 to 70 ? How does the learner learn whether he has math anxiety or not, how does learning take place in the brain.

As mathematicians and mathematics educators, one of the most difficult questions that keep our minds busy is; how does learning mathematical concepts happen in the brain?

Just as logic is the youth of mathematics and the adult version of logic in mathematics;

Mathematics education is also the youth of mathematics and the adult form of mathematics education in mathematics.

Permanent learning is possible with successful teaching.
Keywords: Mathematics, Mathematics Education

References

1. Baki, A (1996), What should we teach in school mathematics, how should we teach it? Hacettepe University Faculty of Education Journal. Ankara
2. Ersoy, Y. (1993), "The Information Age and Mathematics Education: Transformations and New Trends" MESEM-93, 11-12, May 1993, METU, Ankara (Unpublished speech).
3. Ersoy, Y. (1995), Trends in Mathematics Education, Contemporary Education. Ankara NONE \backslash Word Bank National Education Development Project. Teaching Mathematics in Secondary Schools, (1996).
4. Işık, A., Bekdemir, M., "The Nature of Mathematics and Its Place in Education", Contemporary Education Der. (245), 19-22, 1998.
5. Işık, A., Çiltaş, A. \& Bekdemir, M., (2008), The Necessity and Importance of Mathematics Education, J. of Kazım Karabekir Education Faculty, No:17, 174-184,
6. Işık, A., Çiltaş, A \& Baş, F., (2010). Teacher Training and Teaching Profession, Atatürk University Journal of Social Sciences Institute 14 (1): 53-62
7. Işık,A, (2002). Changes in the world of mathematics, Kastamonu Education Journal, Vol10, No2, 365-368, ,
8. Kart, C. (1996), Mathematics and its Role in the Development of the Country, Contemporary Education, Ed. 3-8, 1996.
9.Laborde,C., Information Technology: Teacher Training Seminar in Mathematics Teaching (BiTeMES-1), May 4-6, 2000 METU.
9. Gür, Bekir S (editor), 2004, Philosophy of Mathematics, Ankara
10. Jerry P. King,(1992) The Art of Mathematics
12.Gul, F. (2002), Science, Philosophy and Religion in Bertrand Russell
11. Sertöz, S. (2002), The Bright World of Mathematics

ATATÜRK
ÜNIVERSİTESİ
YAYINLARI
ATATURK
UNIVERSITY
pUBLICATIONS

INVITED SPEAKERS

Optimization Models for Pandemic Response Planning

Bismark Singh ${ }^{1}$,
${ }^{1}$ Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, bismark.singh@fau.de

Optimizing the spatiotemporal allocation and distribution of a limited number of critical medical resources - such as vaccines and antivirals - is a pervasive problem that is especially aggravated during a pandemic. The challenge is further complicated by mismatches between supply and demand over time and also by uncertainty in demand and/or supply. We present a collection of optimization models that we have developed over the past ten years, and applied to the 2009 H1N1 (retrospectively) and current COVID-19 (dynamically) pandemics. Some of these questions, that lie at the interface of epidemiology and optimization, include how to fairly allocate vaccines, how to determine an optimal set of facilities to provide antivirals, and how to relax and reinstate lockdowns.
Keywords: pandemics, optimization, epidemiology.
2020 Mathematics Subject Classification: 90C15, 90C06, 90C11.

References

[1] Daniel Duque, David P. Morton, Bismark Singh, Zhanwei Du, Remy Pasco, and Lauren Ancel Meyers. Timing social distancing to avert unmanageable COVID-19 hospital surges. Proceedings of the National Academy of Sciences, 117(33):19873-19878, July 2020.
[2] Haoxiang Yang, Özge Sürer, Daniel Duque, David P. Morton, Bismark Singh, Spencer J. Fox, Remy Pasco, Kelly Pierce, Paul Rathouz, Victoria Valencia, Zhanwei Du, Michael Pignone, Mark E. Escott, Stephen I. Adler, S. Claiborne Johnston, and Lauren Ancel Meyers. Design of COVID-19 staged alert systems to ensure healthcare capacity with minimal closures. Nature Communications, 12(1), June 2021.
[3] Bismark Singh. Fairness criteria for allocating scarce resources. Optimization Letters, May 2020.
[4] Bismark Singh, Hsin-Chan Huang, David P. Morton, Gregory P. Johnson, Alexander Gutfraind, Alison P. Galvani, Bruce Clements, and Lauren A. Meyers. Optimizing distribution of pandemic influenza antiviral drugs. Emerging Infectious Diseases, 21(2):251-258, February 2015.
[5] Hsin-Chan Huang, Bismark Singh, David P. Morton, Gregory P. Johnson, Bruce Clements, and Lauren Ancel Meyers. Equalizing access to pandemic influenza vaccines through optimal allocation to public health distribution points. PLOS ONE, 12(8):e0182720, August 2017.

NEW DEVELOPMENTS IN THE THEORY OF LIFTS
 (Invited Speaker)
 Arif Salimov ${ }^{1}$
 ${ }^{1}$ Department of Algebra and Geometry, Baku State University, Azerbaijan, asalimov@hotmail.com
 (Dedicated to the memory of Professor Kentaro Yano)

The main purpose of this report is to study the differential geometrical objects on tangent bundle corresponding to holomorphic objects of holomorphic manifold. As a result of this algebraic approach we find a new class of lifts (deformed complete lifts) in the tangent bundles.

Reference

[1] Yano, Kentaro; Ishihara, Shigeru Tangent and cotangent bundles: differential geometry. Pure and Applied Mathematics, No. 16. Marcel Dekker, Inc., New York, 1973. ix+423 pp.

Geometric Realization of Path Cycles as Flow Cycles. Extension of J.H.C. Whitehead Homotopy System Geometric Realization Theorem

James F. Peters ${ }^{1}$
${ }^{1}$ University of Manitoba-Kanada, james.peters3@umanitoba.ca

This talk introduces geometric realization of path cycles in a cell complex as flow cycles in a vector field. A planar cell complex [7-8] is a collection of $0-, 1-$ and 2-cells that may or may notbe attached to each other in a Hausdorff space [2]. A 0 -cell is point (either by itself or on a curveor in the intersection between curves in a vector space). A 1-cell is edge (arc), which is an arcattached to a pair of 0 -cells. A path h is a continuous map $h:[0,1] \rightarrow X$ with endpoints $h(0)$, $h(1) \in X$ and all $h(t) \in X$ for $t \in[0,1]$ (unit interval). From [2], every path has a geometric realization as an edge (1-cell). A path triangle is a sequence of three overlapping paths with no end path. From [2], we also have that every path triangle has a geometric realization as a 2-cell (triangle). In its simplest form, a free group presentation of path triangle is a Rotman free group [6], geometrically realized as a collection of path-connected vertexes [3]. The focus here is on path cycles geometrically realized either as 1-cyles or as a flow cycle in the Euclidean plane. A flow cycle is a collection as path-connected vectors in a vector field with no end vector. A cycle vector field is a flow cycle in a vector field. An optical flow is an example of a cycle vector field. A 1-cycle is a collection of path-connected vertexes (also vectors in a circulation) with no end vertex. From [4], every path cycle is realizable as a 1-cycle with many applications [6] (inspired by S. Lefschetz [1]) such as optical flow fields in video frame sequences.

Keywords: Cell, Cell Complex, Circulation, Flow Cycle, Path, Path Cycle, Vector Field..
2020 Mathematics Subject Classification: 05C38 (Paths and cycles), 57M20 (Low Dimensional Complexes), 37C27 (Periodic orbits of vector fields and flows).

References

[1] S. Lefschetz, "Applications of Algebraic Topology", Springer-Verlag, NY, 1975.
[2] F. Hausdorff, "Grundzüge der Mengenlehre. Veit and Co., Leipzig, 1914.
[3] J.F. Peters, "Path triangulation, cycles and good covers on planar cell complexes. Extension of J.H.C. Whitehead's homotopy system geometric realization theorem and E.C. Zeeman's collapsible cone theorems", Bull. Allahabad

Math. Soc., 2022 [in press], hal-03614419, 1-17, (2022). https://hal.archives-ouvertes.fr/hal-03614419.
[4] J.F. Peters, "Free rings and their geometric realization as planar cycle complexes. Extension of J.J. Rotman's Free Group Theorem" (submitted), 2022, hal-03586348, 1-14, https://hal.archives-ouvertes.fr/hal-03586348v2.
[5] J.F. Peters and T. Vergili, "Computational Algebraic Topology with Applications. Shape Complexes and Proximities", Springer Nature, Switzerland AG [to appear].
[6] J.J. Rotman, "The Theory of Groups: An Introduction", Allyn and Bacon, Boston, 1965, 1995.
[7 J.H.C. Whitehead, "Combinatorial homotopy I", Bull. A.M.S. 55, no. 3, 213-245 (1949).
[8] J.H.C. Whitehead, "Combinatorial homotopy II", Bull. A.M.S. 55, no. 5, 453-496 (1949).

Conformal Riemannian Maps from Kaehler Manifolds to Riemannian Manifolds
(Invited Speaker)
Bayram Şahin ${ }^{1}$
${ }^{1}$ Department of Mathematics Ege University 35100, Izmir, Türkiye, e-mail:
bayram.sahin@ege.edu.tr

Abstract

In the manifold theory, the theory of smooth maps between smooth manifolds is very important. The main reason of the importance of this concept is that this theory has applications in physics (general relativity) as well as in engineering (computer aided design). One can see in differential geometry, popular smooth maps, in the aspect of the most active area, are isometric immersions and Riemannian submersions One can see that isometric immersions and Riemannian submersions are very special maps comparing with maps of arbitrary ranks. Therefore, Fischer defined Riemannian maps between Riemannian manifolds as a generalization of isometric immersions and Riemannian submersions. A Riemannian map is a map such that it satisfies partially isometry condition. This enables us to consider general isometry between Riemannian manifolds. The purpose of this talk is to present recent developments on conformal Riemannian maps from Kaehler manifolds. Geometric notions in almost Hermitian manifolds are defined according to the complex structure on the manifolds. Considering this approach, invariant, anti-invariant, semi-invariant and slant classes of conformal Riemann maps are introduced, examples are given for each class, characterizations are obtained and the properties of the map are presented. In addition, results are given on whether the map of these classes is totally geodesic and harmonic. Considering that these presented conformal Riemann maps are a broad class of almost Hermitian manifolds including holomorphic submersion, anti-invariant Riemannian submersion, semi-invariant submersion and slant submersion, these new geometric concepts seem to have the potential to stimulus new research problems in differential geometry.

References

[1] Akyol M. A. Conformal semi-invariant submersions from almost product Riemannian manifolds. Acta Math Vietnamica 2017; 42: 491-507.
[2] Akyol M. A., Sahin B. Conformal anti-invariant submersions from almost Hermitian manifolds. Turkish J Math 2016; 40: no. 1, 43-70.
[3] Akyol M. A., Sahin B. Conformal semi-invariant submersions. Commun Contemp Math 2017; 19: 1650011-1650033.
[4] Akyol M. A., Sahin B. Conformal slant submersions. Hacet J Math Stat 2019; 48 1: 28-44.
[5] Baird P., Wood J. C. Harmonic morphism between Riemannian manifolds. Clarendon Press, Oxford, NY, 2003.
[6] Chen B. Y. Riemannian submanifolds. Handbook of Differential Geometry, Vol. I, Elsevier, 2000; 187-418.
[7] Falcitelli M., Ianus S., Pastore A. M. Riemannian submersions and related topics. World Scientific, River Edge, NJ, 2004.
[8] Fischer A. E. Riemannian maps between Riemannian manifolds. Contemporary math 1992; 132: 331-366.
[9] Garcia-Rio E., Kupeli D. N. Semi-Riemannian maps and their applications. Kluwer Academic, Dortrecht, 1999.
[10] Gray A. Pseudo-Riemannian almost product manifolds and submersions. J Math Mech 1967; 16: 715-737.
[11] Miao J., Wang Y., Gu X., Yau S. T. Optimal global conformal surface parametrization for visualization. Commun Inf Syst 2005; 4(2): 117-134.
[12] [Nore T. Second fundamental form of a map. Ann Mat Pur and Appl 1987; 146: 281-310.
[13] Ohnita Y. On pluriharmonicity of stable harmonic maps. Jour London Math Soc 1987; 2 35: 563-587.
[14] O'Neill B. The fundamental equations of a submersion. Mich Math J 1966; 13: 459-469.
[15] Sahin B. Riemannian submersions, Riemannian maps in Hermitian geometry, and their applications. Elsevier, London, 2017.
[16] Sahin B. Conformal Riemannian maps between Riemannian manifolds, their harmonicity and decomposition theorems. Acta Appl Math 2010; 109: 829-847.
[17] Sahin B. Anti-invariant Riemannian submersions from almost Hermitian manifolds. Cent Eur J Math 2010; 8: no. 3, 437-447.
[18] Sahin B. Anti-invariant Riemannian maps from almost Hermitian manifolds. arXiv:1210.0401, 2012.
[19] Sahin B. Holomorphic Riemannian maps. Zh Mat Fiz Anal Geom 2014; 10: 422-429.
[20] Sahin B. Manifoldların Diferensiyel Geometrisi (Turkish). Nobel Academic Press, 2012.
[21] Taştan H. M. On Lagrangian submersions. Hacet J Math Stat 2014; 43: no. 6, 993-1000.
[22] Wang Y., Gu X., Yau S. T. Volumetric harmonic map. Commun Inf Syst 2003; 3 (3): 191-201.
[23] Wang Y., Gu X., Chan T. F., Thompson P. M., Yau S. T. Brain surface conformal parametrization with the Ricci flow. In: IEEE International Symposium on Biomedical Imaging-From nano to macro (ISBI); Washington D.C. 2007, pp. 1312-1315.
[24] Sahin B., Yanan S, Conformal Riemannian maps from almost Hermitian manifolds. Turkish J Math 2018; 42: 2436-2451.
[25] Şahin B., Yanan S, Conformal semi-invariant Riemannian maps from almost Hermitian manifolds. Filomat 2019; 33: no. 4, 1125-1134.
[26] Yanan, S.s, Şahin, B., Conformal slant Riemannian maps, Int. J. Maps Math. 2022, 5(1), 78-100.
[27] Yanan, S_{s}, Conformal semi-slant Riemannian maps from almost Hermitian manifolds onto Riemannian manifolds, Filomat 36:5 (2022), 1719-1732
[28] Yanan, S_{s}, Conformal hemi-slant Riemannian Maps, Fundamentals of Contemporary Mathematical Sciences, 3(1), (2022), 57-74.
[29] Yanan, S_{s}, Conformal generic Riemannian maps from almost Hermitian manifolds, Turkish Journal of Science, (2021), 6(2), 76-88.
[30] Yanan, S_{s}, Quasi-hemi-slant conformal submersions from almost Hermitian manifolds, Turk. J. Math. Comput. Sci. 13(1), (2021), 135-144
[31] Yanan $\mathrm{S}_{\text {; }}$ Kompleks geometride konform Riemann dönüşümleri (Turkish). Ph.D. Thesis, İnönü University, 2019.
[32] Yano K., Kon M. Structures on manifolds. World Scientific, Singapore, 1984.

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

Selection Principles in Mathematics

Boaz Tsaban ${ }^{1}$
${ }^{1}$ Mathematics, Bar-Ilan University, tsaban@math.biu.ac.il

I will provide an overview of the theory of Selection Principles, with its connections and applications to various branches of mathematics, including measure theory, function spaces, Ramsey theory, and game theory. I will also talk about omission of intervals, a method that I developed for constructing subsets of the real line with extraordinary combinatorial properties, and answering some classic questions.

Keywords:Selection Principles, Omission of Intervals, strong measure zero, FrechetUrysohn spaces, Menger space, Ramsey theory, game theory.

References

[1] Selection Principles and special sets of reals, in: Open Problems in Topology II (E. Pearl, ed.), Elsevier B.V., 2007, 91-108. Scales, fields, and a problem of Hurewicz (with L. Zdomskyy), Journal of the European Mathematical Society 10 (2008), 837-866. Superfilters, Ramsey theory, and van der Waerden's Theorem (with N. Samet), Topology and its Applications 156 (2009), 2659-2669.
[2] Squares of Menger-bounded groups (with M. Machura and S. Shelah), Transactions of the American Mathematical Society 362 (2010), 1751-1764.
[3] Point-cofinite covers in Laver's model (with A. Miller), Proceedings of the American Mathematical Society 138 (2010), 3313-3321.
[4] Menger's and Hurewicz's Problems: Solutions from "The Book" and refinements, Contemporary Mathematics 533 (2011), 211-226. Linear sigma-additivity and some applications (with T. Orenshtein), Transactions of the American Mathematical Society 363 (2011), 3621-3637.
[5] Hereditarily Hurewicz spaces and Arhangel'skii sheaf amalgamations (with L. Zdomskyy), Journal of the European Mathematical Society 12 (2012), 353-372.
[6] Pointwise convergence of partial functions: The Gerlits-Nagy Problem (with T. Orenshtein), Advances in Mathematics 232 (2013), 311-326.
[7] Selective covering properties of product spaces (with A. Miller and L. Zdomskyy), Annals of Pure and Applied Logic 165 (2014), 1034-1057.
[8] Selective covering properties of product spaces, II: γ spaces (with A. Miller, L. Zdomskyy), Transactions of the American Mathematical Society 368 (2016), 2865-2889.
[9] Products of Menger spaces: A combinatorial approach (with P. Szewczak), Annals of Pure and Applied Logic 168 (2017), 1-18. Algebra, selections, and additive Ramsey theory, Fundamenta Mathematicae 240 (2018), 81-104.

On the Artificial Intelligence, Big Data, Blockhain Technologies in Medicine

(Invited Speaker)

Murat KİRİŞCİ ${ }^{1}$
${ }^{1}$ İstanbul University-Cerrahpaşa, İstanbul, Türkiye, murat.kirisci@iuc.edu.tr

What is the Blockchain?
To answer this question, we first need to remind some fundamental concepts.
These concepts are Data, Database, Network Technologies, cryptology, and the philosophy of this new idea.

Data

As it is known, this word is the same in English and Latin languages, and it is a concept that has started to normalize in our language in daily life. It is the name given to the crude, raw piece of information.

Data is obtained by measurement, counting, experiment, observation, or research.

Like any symbolic representation, data is a set of abstract statements about a particular object, individual, or phenomenon.

Not only in scientific or technological studies but also daily life, we know that data alone has no meaning and function. What makes data meaningful is that, after they are collected, they are grouped, ranked and summarized, processed, and transformed into information. Thus, data gains the power to explain the element they belong to and they become able to serve a purpose such as problem-solving or decision making.

Contrary to popular belief, data is not only produced by humans. Millions of different data such as cosmic rays originating from solar flares that we cannot record and electrons revolving around atoms are constantly produced in the universe. What is more interesting is that the genetic coding that forms the basis of life, namely DNA, is among the most basic data records that have not been handed by humanity, can be copied and reproduced between cells, and are reconstructed by transferring them between the transmitter and the receiver under certain conditions.

From the discovery of writing to today's technologies, there have always been data records. These data have been recorded in bye opportunities given by the history and the conditions of the day.

Recently, while recordings are kept by various physical tools from highcapacity DVDs to USBs, today's indispensable recording source is cloud services.

Database

The structure created by librarianship and archiving techniques, whose origins date back hundreds of years, with computer systems is called a database.

Edgar Codd, working at the IBM San Jose Research Laboratory in 1973, introduced the definition of "Relational Database". Relational databases store data in tables and create links between these tables. Users are concerned not with how data is stored, but with how it is presented to them. The language created for querying recorded data is SQL, and this query language has turned into a database query standard.

The first regular data storage solutions were called Spreadsheet Applications.
Considering that spreadsheet applications are limited data storage and analysis solutions, today's huge databases can contain trillions of rows of data and their size can be at the level of Petabytes.

In today's world, cloud solutions provide us with the infrastructures we need with a unique cost advantage. However, a cloud solution is not also the endpoint of technological development. There is more.

Today, the number of devices connected to the Internet has exceeded the human population. While this structure, called the Internet of Things (IoT), grows exponentially, the economy it creates is considered to be trillions of dollars. Is it possible to record and store the data produced by all these systems in a distributed way?

The answer to this question has been YES at the turn of the century. This answer appeared as a kind of data storage solution called "Peer To Peer - P2P" developed for sharing data over machines.

In these systems, the data is not in a single center but distributed or shared over millions of machines. Some of these machines may contain the entire data, while others may contain a partial piece of data.

However, these services, which are thought to be accessed without paying any price, have a price, even if it is not known. While you pull the data into your computer, you also serve as a data source to other users in return for the data you receive.

Therefore, although the platforms that provide these services offer a solution beyond the cloud, they are not a secure storage solution for corporate or private personal data, as the content is not encrypted and does not offer options as to where the data will be stored.

Network Technologies

Thanks to technology, periods of one hundred years pass faster. Although we do more in less time! The fact that wireless communication technologies, which play an important role in communication today, actually constitute one of the cornerstones of the natural ecosystem for millions of years, maybe one of the most interesting pieces of information.

Almost all plants have been using wireless communication technology for millions of years to continue their generation. Flowers have pollen and other plants have nuclei for wireless transmission of DNA, one of the oldest data records.

Here, we call the technologies inspired by nature network technologies.

Mobile Web access is no longer a luxury since wireless network technologies started to develop and WiFi standards came into our lives. Today, communication networks that reach very high speeds are one of the most important components that enable the rapid spread of Blockchain technology.

Cryptology

Let's talk briefly about the concept of Cryptology, which is the basis of blockchain technology and has great importance, and let's get into our subject.

For thousands of years, one of the most important needs that emerged while recording the produced data has been to hide the data from unwanted eyes. This naturally brings up cryptology, which is a science of thousands of years, starting from the idea of secrecy.

In its simplest form, Cryptography refers to the encryption of data.
Encryption turns any dataset into a seemingly random dataset using a rule structure. This seemingly random dataset can only be converted back to its original and meaningful form by those who have the key used for encryption. For those who don't have this key, it doesn't make any sense. Thus, no matter where or how encrypted data is stored, it remains meaningful only to the owner of the key.

Philosophy

It is possible to explain the philosophy of blockchain technology as follows:
The technical study titled "Bitcoin: Peer-to-Peer Electronic Cash Payment System" published by the pseudonymous Satoshi Nakamoto, which emerged only two months after the bankruptcy of Lehman Brothers in 2008 and whose identity is still confidential, although a series of it presents the mathematical and technological application to us the main message is given in the article is as follows: "O people! Whether you know each other or not, it is now possible to establish a secure data recording system without the need for centralized structures. Because this system uses the possibilities of mathematics and technology, it cannot be manipulated or corrupted."

What is the Blockchain?

While talking about Blockchain, it is necessary to understand what is in this system, that is, what changes this business rather than the technical analysis of the business. So it is very we must understand chess in our lives.

So, first, we had a single copy of a recording, then we distributed that recording to several computers, then we distributed many copies of this recording to many computers, and finally, each computer has become to keep a record of the transaction. The main reason for this is that the costs have decreased drastically over time.

The development process in digital technologies is so fast that costs decrease inversely compared to technological progress every few years.

It has been seen that it is practically possible to distribute data to many computers over cheap communication networks. At this point, our records have been and continue to be copied to all systems.

This approach is called the Distributed Ledger.
Simply put, Blockchain is a recording technology. So what you call blockchain is a registry.

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

It is a ledger mentioned here and this ledger is not the only one. This ledger is a common ledger and copies of this ledger are available in many parts of the world.

We heard about Blockchain with Bitcoin. So some misconceptions arose. There is only one ledger on Blockchain and there is a fundamental misconception that this ledger is called bitcoin. No, it's not like that. It is possible to talk about many ledgers and only one of these ledgers is Bitcoin. Since Bitcoin is the first and is very well known, this is mistaken. There are many ledgers besides Bitcoin: For example, Ethereum, avalanche, and Solana. The purpose of recording each of these ledgers is different. In other words, the purpose of existence of these notebooks is different.

Shortly, we will be talking about the health ledgers used by all states. But it should be well known that even though it is expressed as the solution to all problems, the blockchain is not a magic wand either.

Networks

For the implementation of the blockchain, it will be sufficient to look at three main parameters:

Having more than one stakeholder.
Stakeholders are generating data.
Having a problem of trust between stakeholders
Yes, let's be careful here. We are not talking about stakeholders trusting each other. On the contrary, blockchain can be implemented in a situation where there are stakeholders who do not trust each other. In other words, we are talking about a structure that can be used by stakeholders who do not trust each other.

Implementation

We can think of blockchain applications for the health sector as follows.

1. Personal Health Data
2. Smart Contracts
3. IoT

1. Personal Health Data

There is an important concept that enters our lives with Blockchain: Personal sovereignty. This concept comes from here. As a person, my data belongs to me and no one else has the right to use this data without my permission. In other words, no one else can use my data without my permission and no one else can produce value from this data.

Let's exemplify this situation with an economic field. For example, we can earn 20 dollars from the use of our simplest data (such as name-surname, age, gender, place of birth), and 50 dollars from the use of slightly more qualified data (graduate degree, habits, friends, hobbies, etc.). In other words, if our data is on the blockchain and this data is used with our permission, it is possible to earn a good income. Likewise, health data is our private data and should be used as long as we allow it.

The "permission" we use here is "the private key", "the public key" in the blockchain world. In other words, if a person or an institution wants to access
and use my data thanks to my key, they have to get my permission. For example, the pharmaceutical industry can use my data in drug production studies. Naturally, when I permit to use these keys, these usages should have a return for me. The blockchain world makes this possible. We said that the person can also earn from this data usage. There are companies in the world that do this type of work. One of them has created a health token, and when a person allows their own health data to be used, they can earn a health token in return for this use permission. This is an interesting and beautiful application.

2. Smart Contracts

Here, insurance companies can benefit from blockchain to offer solutions that make life easier, reduce financial losses and prevent fraud.

Smart contracts are essentially a piece of code. So it is software. This software implements predefined rules.

The bond of trust and "promise to pay" inherent in the insurance industry is important. Traditional certificates have been withheld for years by both public and private institutions to create evidence to the client. The software type certificates used during these processes bring great costs to the users. Certain major companies providing these certificates are overpaid. These certificates are tied to a central service provider in a specific chain of rules. Although it may seem like a personal benefit, it can actually be controlled from one point. For example, for humans, this could be a birth certificate or a document such as a driver's license. For consumers, it is in the form of similar certificates that provide verification of quality and authenticity. Blockchain technologies can provide us with systems that will eliminate this system and will be used between stakeholders in real terms and can be used without being tied to a central point.

Blockchains allow these traditional certificates to be stored at an immutable date, where anyone can search and apply. It can update these records as new events occur. It enables the creation of a new type of identity for both people and other objects. These processes are built on a traditional model in which a certificate authority issues certificates.

3. IoT

IoT devices on the blockchain network can now autonomously broadcast their records and update the current state they are in. In addition, these devices can speak for themselves, publishing and sharing their histories and identities with third parties. Therefore, it allows the human element to gradually disappear.

In this sense, IoT can be a life-enhancing solution for pharmaceutical supply based on logistics.

In the health sector, recording IoT data on the blockchain is a suitable solution, especially in the cold chain (such as vaccines) or in matters where the supply needs to be tracked. Therefore, it is possible to determine that the transportation is done correctly and that things are going well, without the need for any end-to-end trust.

There is a vaccination card application related to the pandemic, which is one of the most important issues of the recent period, and vaccination, which is one
of the forms of protection. This card, which appeared during the coronavirus pandemic, is actually a record and therefore a data. When you save this record on a blockchain, when you are asked to document your vaccination status, you can easily handle your transactions by showing your vaccination information on the blockchain, regardless of any authority. This blockchain-based registration system allows you to transact with verified data without relying on personal trust. Thus, a world emerges where speed, convenience, and costs are reduced. The idea of having the vaccination card on the blockchain is a very good practice.

Opportunities and Challenges

How will the digitization in the health sector be or how does it happen? With the spread of the Internet, such questions and expectations came to the fore. Because there is a problem: A patient never only goes to a hospital, the patient doesn't just see a physician. In other words, a patient goes to different physicians and different hospitals. Therefore, it was said that it is very important to share the data related to the diseases that the person has accumulated over the years, with different physicians, and to different hospital systems. However, the infrastructure for this could not be established. It was said that whether there are large buildings, or large servers should be established in these buildings, everyone and all hospitals and health institutions should automatically send patient data to this center, and it should be shared from this center.

Although this idea seemed very good at first, serious problems arose. First of all, a very expensive system was mentioned. There were also security problems. Then the problem of which data to send appeared. On the other hand, one hospital kept data on the same subject in one format with a particular patient information system, while another hospital kept data in a different format. This simply posed the following problem: Where do we send this data and in what format do we keep it? Moreover, the question of what would happen if these data were stolen came to the fore. In other words, it was said that if the data about a person's illness or deficiency, for example, fell into the hands of an insurance company or other types of institutions or persons that would profit from it, it would be misused, and everyone stood up for the data against these problems. In other words, this project is over before it even started, and hospitals and health institutions said that this data belongs to us and we will not share it with anyone. Besides, what will happen if the real owner of the data says that I am paying for this health service and I must move my data to where I want? So things got messed up!

So, has this problem been solved today? In other words, how should this data be kept, and in what format has it been fully established? Unfortunately, the answer will be NO.

Although everyone believes in the necessity of sharing health data all over the world today, the problem is getting more complicated. Because it is not very clear who should share this data and under what conditions. The issues of "who will keep this data and where" have not been clarified. Why am I saying this? Namely, a person's data from an imaging device, ECG data, laboratory data, physical therapy measurements, patient diagnosis data, and treatment

Yayinari
ATATURK
UNIVRRITY
data take up a huge amount of space. Are there fields that can hold this much data? At this point, the blockchain is capable of producing solutions to these problems we have expressed.

Blockchain technically solves the problem of storing data and puts the data under the control of the person in terms of protecting the data of the person. Thus, the person can create immutable records and share this immutable data. But sharing is still a problematic issue and even though its technical infrastructure has been formed, legal base problems continue. Many institutions in the world do not put forward commercial concerns and say that we do not share data. Statements like "data are too valuable" or "data is too expensive" are due to misunderstanding. Let's even say this, who will value a piece of data and how?

One of the problems is that states have not yet created legal situations suitable for blockchains. Here, it can be thought that the states take these things slowly and act a bit clumsy. However, for example, if it is not clear in which format the data will be shared, what kind of legal mechanism will be created for this data sharing? Even physicians, not hospitals, or even civil servants in healthcare institutions handle data in different ways. Naturally, the question of how data in different formats will be shared and with whom this data will be shared are unanswered questions. In other words, it is said that all data should be shared with the state regulation, but for example, do Hospital A exchange information with Hospital B? If states give such an order, it will only add to the uncertainty.

World health expenditure is over 8 trillion dollars. This is a huge market. Damage from data breaches in this market is said to be around $\$ 100$ billion. When we follow the movements of such a large market, we see that without waiting for the regulations, especially the elders of the health sector started these works and I think it seems that the regulations can follow these studies.

Keywords: Data, Database, Cryptology, Network Technologies, Philosophy. REFERENCES
[1] Chayakrit Krittanawong, Mehmet Aydar, Hafeez Ul Hassan Virk, Anirudh Kumar, Scott Kaplin, Lucca Guimaraes, Zhen Wang, Jonathan L.Halperin, Artificial Intelligence-Powered Blockchains for Cardiovascular Medicine, Canadian Journal of Cardiology, 38(2), 2022, 185-195
[2] Inderpreet Kaur; Yogesh Kumar; Amanpreet Kaur Sandhu, A Comprehensive Survey of AI, Blockchain Technology and Big Data Applications in Medical Field and Global Health, 2021 International Conference on Technological Advancements and Innovations (ICTAI) Tashkent, Uzbekistan, DOI: 10.1109/ICTAI53825.2021.9673285
[3]] Mahmood A. Bazel; Fathey Mohammed; Mogeeb Alsabaiy; Hussein Mohammed Abualrejal, The role of Internet of Things, Blockchain, Artificial Intelligence, and Big Data Technologies in Healthcare to Prevent the Spread of the COVID-19, 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), Zallaq, Bahrain. DOI: 10.1109/3ICT53449.2021.9581469
[4] M. Junaid Gul, Barathi Subramanian, Anand Paul, Jeonghong Kim, Blockchain for public health care in smart society, Microprocessors and Microsystems, 80, 2021, DOI: 10.1016/j.micpro.2020.103524.
[5] Hassan Mansur Hussien, Sharifah Md Yasin, Nur Izura Udzir, Mohd Izuan Hafez Ninggal, Sadeq Salman, Blockchain technology in the healthcare industry: Trends and opportunities Journal of Industrial Information Integration 22 (2021) 100217, DOI: 10.1016/j.jii.2021.100217
[6] Abid Haleem, Mohd Javaid, Ravi Pratap Singh, Rajiv Suman, Shanay Rab, Blockchain technology applications in healthcare: An overview, International Journal of Intelligent Networks 2 (2021) 130-139. DOI: 10.1016/j.ijin.2021.09.005
[7] K.Azbeg, O.Ouchetto, S.J.Andaloussi, L.Fetjah, A Taxonomic Review of the Use of IoT and Blockchain in Healthcare Applications, IRBM, DOI: 10.1016/j.irbm.2021.05.003
[8] Reyes-González Juan Pablo, Díaz-Peregrino Roberto, Soto-Ulloa Victor, Galvan-Remigio Isabel, Castillo Paul and Ogando-Rivas Elizabeth, Big data in the healthcare system: a synergy with artificial intelligence and blockchain technology, Journal of Integrative Bioinformatics 2021, DOI: 10.1515/jib-20200035
[9] Supriya M. and Vijay Kumar Chattu, A Review of Artificial Intelligence, Big Data, and Blockchain Technology Applications in Medicine and Global Health, Big Data Cogn. Comput. 2021, 5, 41. DOI: $10.3390 /$ bdcc 5030041
[10] Mohamed Yaseen Jabarulla and Heung-No Lee, A Blockchain and Artificial Intelligence-Based, Patient-Centric Healthcare System for Combating the COVID-19 Pandemic: Opportunities and Applications, Healthcare 2021, 9, 1019. DOI: 10.3390/healthcare9081019
[11] Yi XIE Lin LU, Fei GAO, Shuang-jiang HE, Hui-juan ZHAO, Ying FANG, Jia-ming YANG, Ying AN, Zhe-wei YE, Zhe DONG, Integration of Artificial Intelligence, Blockchain, and Wearable Technology for Chronic Disease Management: A New Paradigm, in Smart Healthcare, Current Medical Science, 41(6):1123-1133,2021, DOI https://doi.org/10.1007/s11596-021-2485-0

Geodesic mappings and their generalizations

(Invited Speaker)

J. Mikeš ${ }^{1}$, I. Hinterleitner ${ }^{2}$, P. Peška ${ }^{3}$,L. Rıparová ${ }^{4}$
${ }^{1}$ Palacky University, Czech Republic, josef.mikes@upol.cz

The important part of the contemporary differential is a study of mappings that map geodesics onto special curves, i.e., geodesics, almost geodesics, analytic curves, etc. The theories of these mappings have applications in theoretical physics for modeling gravitational, electromagnetic, and other fields.

Geodesic mappings are mappings that map any geodesic onto geodesic. Let $A_{n}=(M, \nabla)$ and $\bar{A}_{n}=(\bar{M}, \bar{\nabla})$ be affine spaces, where M and \bar{M} are n dimensional manifolds, ∇ and $\bar{\nabla}$ are torsion-free affine connections. It is known [4] that A_{n} admits geodesic mapping onto \bar{A}_{n} if and only if the Levi-Civita equations

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+\psi(X) Y+\psi(Y) X \tag{1}
\end{equation*}
$$

hold for any tangent fields X, Y and where ψ is a linear differential form, ∇ and $\bar{\nabla}$ are the Levi-Civita connections. We can suppose that $\bar{M}=M$. If ψ is vanishing then the mapping f is affine or trivially geodesic.

It was proved that geodesic mapping of geodesic mappings of (pseudo-)Riemannian spaces onto (pseudo-)Riemannian spaces preserve the differentiability class of metric [2]. The similar holds for geodesic mappings of spaces with affine connection onto (pseudo-)Riemannian spaces [3].

Furthermore, it was also proved that all affine spaces are geodesically equivalent to equiaffine spaces [10]. Mikeš and Berezovski [5] found a criterion (equivalent to the Levi-Civita equations) for the existence of geodesic mapping of equiaffine space onto (pseudo-)Riemannian space. The criterion was in a form of linear partial differential equations in covariant derivatives. These equations hold globally and also locally. See [4].

A special part is also dedicated to the existence of so-called geodesic bifurcation. This term describes the situation where there exist more geodesics passing through the given point in the given direction, the case where the condition of geodesic uniqueness is not fulfilled. The example of geodesic bifurcation was given on the surface of revolution. Moreover, based on this example, another example of closed geodesic was given as well as an example of geodesic bifurcation of product spaces [9].

Next, S.G. Leiko defined so-called rotary mapping. Rotary mappings are mappings that map any geodesic onto an isoperimetric extremal of rotation.

Isoperimetric extremal of rotation is a special curve which is an extremal of functional of length and functional of rotation. These curves also have an interpretation in physics - they are trajectories of particles with a spin. We generalized this term and found a counterexample of spaces that admit rotary mappings [6].

Finally, we mention the basics of the projective transformation and holomorphically projective transformations (of K"ahler manifolds) theory. In the end, we also briefly mention the basics of F-planar mappings, their definitions, and certain results of these theories $[1,4,7,8]$.

References

[1] I. Hinterleitner, Holomorphically projective mappings of (pseudo-) Kähler manifolds preserve the class of differentiability. Filomat, 30:11, 3115-3122, 2016.
[2] I. Hinterleitner, J. Mikeš, Geodesic mappings and differentiability of metrics, affine and projective connections. Filomat, 29:6, 1245-1249, 2015.
[3] I. Hinterleitner, J. Mikeš, Geodesic mappings onto Riemannian manifolds and differentiability. Geometry, Integrability and Quantization, 18, 183190, 2017.
[4] J. Mikeš et al., Differential Geometry of Special Mappings. Palacky Univ. Press, Olomouc, 2019.
[5] J. Mikeš, V. Berezovski, Geodesic mappings of affine-connected spaces onto Riemannian spaces. Amsterdam: North-Holland. Colloq. Math. Soc. J. Bolyai, 56. Diff. Geom. Eger, 491-494, 1989.
[6] J. Mikeš, L. Rýparová, H. Chudá, On the theory of rotary mappings. Math. Notes 104:4, 617-620, 2018.
[7] J. Mikeš, N.I. Guseva, P. Peška, L. Rýparová, Rotary mappings and projections of a sphere. Math. Notes 110:1, 152-155, 2021.
[8] J. Mikeš, N.I. Guseva, P. Peška, L. Rýparová, Almost geodesic mappings and projections of the sphere. Math. Notes 111:3, 498-502, 2022.
[9] L. Rýparová, J. Mikeš, A. Sabykanov, On geodesic bifurcations of product spaces. J. Math. Sci., New York 239:1, 86-91, 2019.
[10] J.M. Thomas, Asymmetric displacement of a vector. Trans. AMS 28:4, 658-670, 1926.

More on set versions of star selection principles
 (Invited Speaker)
 Ljubisa D.R. Kocinac ${ }^{1}$
 ${ }^{1}$ University of Nis-Sırbistan, lkocinac@gmail.com

Star selection principles have been introduced in 1999 by Kocinac [1]. In this talk we present some results on the recently introduced and studied set star covering properties (Kocinac, Konca, Singh [2,3,4,5]). A space X is said to have the set star-Menger property if for each nonempty subset A of X and each sequence $\left(U_{n}: n \in \mathbb{N}\right)$ of collections of open sets in X such that $\bar{A} \subset \cup U_{n}$, $n \in \mathbb{N}$, there is a sequence $\left(V_{n}: n \in \mathbb{N}\right)$ such that for each $n \in \mathbb{N}, V_{n}$ is a nite subset of U_{n} and $A \subset \cup_{n \in \mathbb{N}} S t\left(\cup V_{n}, U_{n}\right)$ We also discuss set strongly starMenger, set (strongly) star Hurewicz, and set selectively ccc spaces. Some lines of further investigation are considered.

Keywords: Set star Menger, set strongly star Menger, set star Hurewicz, set selectively star ccc.

References

[1] Lj. Ko cinac, Star-Menger and related spaces, Publ. Math. Debrecen 55:3-4 (1999), $421\{431$.
[2] Lj..D.R. Ko cinac, S . Konca, Set-Menger and related properties, Topology Appl. 275 (2020), Art. No. 106996.
[3] Lj.D.R. Ko cinac, S . Konca, S. Singh, Set star-Menger and set strongly star-Menger spaces, 2020, Math. Slovaca 72:1 (2022), $185\{196$.
[4] S . Konca, Lj.D.R. Ko cinac, Set-star Menger and related spaces, Abstract Book VI ICRAPAM 2019 (Istanbul, Turkey, June 12\{15, 2019), p. 49.
[5] S. Singh, Lj.D.R. Ko cinac, Star versions of Hurewicz spaces, Hacet. J. Math. Stat. 50:5 (2021), 1325\{1333.
 AIATURK
UUNEERTTY
pUBLICATITNS

ABSTRACTS

An Existence Study for a Tripled System with p-Laplacian Involving φ-Caputo Derivatives

Hamid BEDDANI ${ }^{1}$
${ }^{1}$ Laboratory of Complex Systems of the Higher School of Electrical and Energy Engineering of Oran, 31000, Algeria. beddanihamid@gmail.com

In this work, we present the existence and uniqueness of solutions for a tripled system of fractional differential equations with nonlocal integro multi point boundary conditions by using the p-Laplacian operator and the φ-Caputo derivatives. The presented results are obtained by the two fixed point theorems of Banach and Krasnoselskii. The following problem:

$$
\left\{\begin{array}{c}
\mathcal{D}_{0^{+}}^{r_{1 m} ; \varphi} \psi_{p}\left[\mathcal{D}_{0^{+}}^{r_{2 m} ; \varphi}\left(u_{m}(t)-\mathcal{I}_{0^{+}}^{\sigma ; \varphi} G_{m}\left(t, u_{1}(t), u_{2}(t), u_{3}(t)\right)\right)\right]=H_{m}\left(t, u_{1}(t), u_{2}(t), u_{3}(t)\right), \tag{1}\\
m=\overline{1,3}, a n d t \in J=[0,1] \\
\psi_{p}\left[\left.\mathcal{D}_{0+\varphi}^{r_{2} ; \varphi}\left(u_{m}(t)-\mathcal{I}_{0+\varphi}^{\sigma ; \varphi} G_{m}\left(t, u_{2}(t), u_{3}(t)\right)\right]\right|_{t=0}=0,\right. \\
u_{m}(0)=0, u_{m}(1)=i=13 \sum \lambda_{i m} u_{i}\left(\zeta_{i m}\right), \zeta_{i m} \in[0,1] \\
\varphi(1)-\varphi(0)=K>0 .
\end{array}\right.
$$

Here, we take $\mathcal{D}_{0^{+}}^{r_{i m} ; \varphi}, i, m=\overline{1,3}$ as the φ-Caputo fractional derivatives of orders $r_{i m}, 0 \leq r_{1 m}<1<r_{2 m}<2$, and $\mathcal{I}_{0+}^{\sigma ; \varphi}, 0<\sigma$, the fractional integral of order $\sigma, \lambda_{\text {im }} \in \mathbb{R}_{+}^{*}$, and $\varphi: J \rightarrow \mathbb{R}$ is an increasing function such that $\varphi^{\prime}(t) \neq 0$, and $\psi_{p}(z)=z|z|^{p-2}$ denotes the p-Laplacian operator and satisfies $\frac{1}{p}+\frac{1}{q}=1,\left(\psi_{p}\right)^{-1}=\psi_{q}(q \geq 2)$. For all $t \in J, G_{m}, H_{m}: J \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a given functions satisfying some assumptions that will be specified later.
Keywords: p-Laplacian operator, φ-Caputo derivative, existence of solution, fixed point.
2020 Mathematics Subject Classification: 30C45; 39B72; 39B85.

References

[1] A. Aghajani, E. Pourhadi, J. J. Trujillo, Application of measure of noncompactness to a Cauchy problem for fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal. 16 (2013) 962977.
[2] O. P. Agrawal, Some generalized fractional calculus operators and their applications in integral equations, Fract Calc Anal Appl 15, 4 (2012).
[3] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul. 44 (2017) 460-481.

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

[4] H. Beddani and Z. Dahmani, Solvability for nonlinear differential problem of Langevin type via phi-Caputo approch, Eur. J. Math. Appl. (2021)1:11, DOI: 10.28919/ejma.2021.1.11
[5] H. Beddani and M. Beddani, Solvability for a differential systems via Phi-Caputo approach. J. Sci. Arts. 56(3)2021
[6] A. A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, vol. 204. Elsevier Science, Amsterdam, 2006.
[7] M. A. Krasnoselskii, Two remarks on the method of successive approximations. UspekhiMat. Nauk 1955, 10, 123-127.
[8] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[9] S. G. Samko, A. A. Kilbas and O. I. Mariche, Fractional integrals and derivatives, translated from the 1987 Russian original. Yverdon: Gordon and Breach, (1993).
[10] A. Seemab, J. Alzabut, M. Rehman, Y. Adjabi, M.S. Abdo, Langevin equation with nonlocal boundary conditions involving a ψ-Caputo fractional operator: arXiv:2006.00391v1 [math.AP] 31 May 2020.
[11] Y. Wang, Existence and nonexistence of positive solutions for mixed fractional boundary value problem with parameter and p-Laplacian operator. J. Funct. Spaces 2018, Article ID 1462825 (2018).

Analysis and applications of the proportional Caputo derivative and integral

Abdellatif Boutiara ${ }^{1}$
${ }^{1}$ Laboratory of Mathematics and Applied Sciences, University of Ghardaia, 47000, Algeria, boutiara_a@yahoo.com

In this paper, we study the Langevin equation within the generalized proportional fractional derivative. The proposed equation involves a variable coefficient and subjects to mixed integrodifferential boundary conditions. We introduce the generalized proportional fractional derivative and expose some of its features. We mainly investigate the existence, uniqueness and different types of Ulam stability of the solutions via fixed point theorems and inequality techniques. Finally, we provide an example to support our main results.
Keywords: Fractional Langevin equation; Generalized proportional fractional derivative; Fixed point theorem. 2020 Mathematics Subject Classification: 26A33, 34A08, 34B15.

References

[1] F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, The European Physical Journal Special Topics 226 (2017), 3457-3471.
[2] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier, 2006.
[3] P. Langevin, Sur la theorie du mouvement brownien (in French) [On the theory of Brownian motion], CR Acad. Sci. Paris 146(1908), 530-533.
[4] A. Granas, J. Dugundji, Fixed Point Theory; Springer, New York, 2003.

On a solvable system of rational difference equations of higher order

Merve Kara ${ }^{1}$, Yasin Yazlik ${ }^{2}$
${ }^{1}$ Department of Mathematics, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey, mervekara@kmu.edu.tr
${ }^{2}$ Department of Mathematics, Faculty of Science and Art, Nevsehir Haci Bektas Veli University, Nevsehir, Turkey, yyazlik@nevsehir.edu.tr

In this paper, we present that the following system of difference equations
$x_{n}=\frac{x_{n-k} z_{n-l}}{b_{n} x_{n-k}+a_{n} z_{n-k-l}}, y_{n}=\frac{y_{n-k} x_{n-l}}{d_{n} y_{n-k}+c_{n} x_{n-k-l}}, z_{n}=\frac{z_{n-k} y_{n-l}}{f_{n} z_{n-k}+e_{n} y_{n-k-l}}$,
where $n \in \mathbb{N}_{0}, k, l \in \mathbb{N}$, the initial values x_{-i}, y_{-i}, z_{-i} are non-zero real numbers for $i \in \overline{1, k+l}$, and sequences $\left(a_{n}\right)_{n \in \mathbb{N}_{0}},\left(b_{n}\right)_{n \in \mathbb{N}_{0}},\left(c_{n}\right)_{n \in \mathbb{N}_{0}},\left(d_{n}\right)_{n \in \mathbb{N}_{0}},\left(e_{n}\right)_{n \in \mathbb{N}_{0}}$ and $\left(f_{n}\right)_{n \in \mathbb{N}_{0}}$ are real, can be solved in closed form. We describe the forbidden set of the initial values using the obtained formulas and also determine the asymptotic behavior of solutions for the case $k=3, l=1$ and the sequences $\left(a_{n}\right)_{n \in \mathbb{N}_{0}},\left(b_{n}\right)_{n \in \mathbb{N}_{0}},\left(c_{n}\right)_{n \in \mathbb{N}_{0}},\left(d_{n}\right)_{n \in \mathbb{N}_{0}},\left(e_{n}\right)_{n \in \mathbb{N}_{0}}$ and $\left(f_{n}\right)_{n \in \mathbb{N}_{0}}$ are constant. Our results considerably extend and improve some recent results in the literature.

Keywords: System of difference equations, Closed solution, Forbidden set. 2020 Mathematics Subject Classification: 39A10, 39A20, 39A23.

References

[1] A De Moivre. The doctrine of chances (1718, 1738, 1756). In Landmark Writings in Western Mathematics 1640-1940, pages 105-120. Elsevier, 2005.
[2] E. M. Elabbasy and E. M Elsayed. Dynamics of a rational difference equation. Chinese Annals of Mathematics, Series B, 30(2):187-198, 2009.
[3] M. Kara, N. Touafek, and Y. Yazlik. Well-defined solutions of a three-dimensional system of difference equations. Gazi University Journal of Science, 33(3):767-778, 2020.
[4] D. T. Tollu, Y. Yazlik, and N. Taskara. On a solvable nonlinear difference equation of higher order. Turkish Journal of Mathematics, 42(4):1765-1778, 2018.
[5] S. Stević, J. Diblík, B. Iričanin, and Z. Šmarda. On a solvable system of rational difference equations. Journal of Difference Equations and Applications, 20(5-6):811-825, 2014.
[6] Y. Yazlik and M. Kara. On a solvable system of difference equations of higher-order with period two coefficients. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2):1675-1693, 2019.

On Eight Solvable Systems of Difference Equations in Terms of Generalized Padovan Sequences

Merve Kara ${ }^{1}$, Yasin Yazlik ${ }^{2}$
${ }^{1}$ Department of Mathematics, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey, mervekara@kmu.edu.tr
${ }^{2}$ Department of Mathematics, Faculty of Science and Art, Nevsehir Haci Bektas Veli University, Nevsehir, Turkey, yyazlik@nevsehir.edu.tr

In this study we show that the systems of difference equations

$$
x_{n+1}=f^{-1}\left(a f\left(p_{n-1}\right)+b f\left(q_{n-2}\right)\right), \quad y_{n+1}=f^{-1}\left(a f\left(r_{n-1}\right)+b f\left(s_{n-2}\right)\right),
$$

for $n \in \mathbb{N}_{0}$, where the sequences p_{n}, q_{n}, r_{n} and s_{n} are some of the sequences x_{n} and $y_{n}, f: D_{f} \longrightarrow \mathbb{R}$ is a " $1-1$ " continuous function on its domain $D_{f} \subseteq \mathbb{R}$, initial values $x_{-j}, y_{-j}, j \in\{0,1,2\}$, are arbitrary real numbers in D_{f} and the parameters a, b are arbitrary complex numbers, with $b \neq 0$, can be explicitly solved in terms of generalized Padovan sequences. Some analytical examples are given to demonstrate the theoretical results.
Keywords: System of difference equations, solution of explicit form, Padovan number.
2020 Mathematics Subject Classification: 39A10, 39A20.

References

[1] E. M. Elabbasy, H. A. El-Metwally, and E. M. Elsayed. Global behavior of the solutions of some difference equations. Advances in Difference Equations, 2011(1):1-28, 2011.
[2] E. M. Elabbasy and E. M. Elsayed. Dynamics of a rational difference equation. Chinese Annals of Mathematics, 30(2):187-198, 2009.
[3] E.M. Elsayed and A. M. Ahmed. Dynamics of a three-dimensional systems of rational difference equations. Mathematical Methods in the Applied Sciences, 5(39):1026-1038, 2016.
[4] E. M. Elsayed, F. Alzahrani, I. Abbas, and N. H. Alotaibi. Dynamical behavior and solution of nonlinear difference equation via fibonacci sequence. Journal of Applied Analysis and Computation, 10(1):282-296, 2019.
[5] M. Kara and Y. Yazlik. Solvability of a system of nonlinear difference equations of higher order. Turkish Journal of Mathematics, 43(3):1533-1565, 2019.
[6] M. Kara, N. Touafek, and Y. Yazlik. Well-defined solutions of a three-dimensional system of difference equations. Gazi University Journal of Science, 33(3):767-778, 2020.
[7] N. Taskara, D. T. Tollu, and Y. Yazlik. Solutions of rational difference system of order three in terms of padovan numbers. Journal of Advanced Research in Applied Mathematics, 7(3):18-29, 2015.
[8] D. T. Tollu, Y. Yazlik, and N. Taskara. On fourteen solvable systems of difference equations. Applied Mathematics and Computation, 233:310-319, 2014.
[9] N. Touafek and E. M. Elsayed. On a second order rational systems of difference equations. Hokkaido Mathematical Journal, 44(1):29-45, 2015.
[10] Y. Yazlik and M. Kara. On a solvable system of difference equations of higher-order with period two coefficients. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2):1675-1693, 2019.

On the boundary observability and controllability of the wave equation in some non-cylindrical domains

Seyf Eddine Ghenimi ${ }^{1}$, Abdelmouhcene Sengouga ${ }^{2}$
1^{2} Department of mathematics, Faculty of mathematics and computer sciences, University Mohammed Boudiaf, M'sila, Algeria,
${ }^{1}$ seyfeddine.ghenimi@univ-msila.dz $\quad{ }^{2}$ abdelmouhcene.sengouga@univ-msila.dz

The goal of this talk is to study the small vibrations of axially moving strings described by a one-dimensional wave equation in a bounded interval with moving endpoints. We establish a sharp energy estimate for the solution. Then, we give explicit observability inequalities in a sharp time at each endpoint. Moreover, by using the Hilbert uniqueness method we obtain exact boundary controllability results.
Keywords: 1-d wave equation, non-cylindrical domain, energy estimates, boundary observability, Hilbert uniqueness method. 2020 Mathematics Subject Classification: 35L05, 93B05, 93B07.

References

[1] S. Ghenimi and A. Sengouga. Free vibrations of axially moving strings: Energy estimates and boundary observability, 2022. Submitted.
[2] S-Y. Lee and C. D Mote. Vibration control of an axially moving string by boundary control. J. Dyn. Sys., Meas., Control, 118(1):66-74, 1996.
[3] W. L. Miranker. The wave equation in a medium in motion. IBM J. Res. Develop., 4(1):36-42, 1960.
[4] A. Sengouga. Exact boundary observability and controllability of the wave equation in an interval with two moving endpoints. Evol. Equ. Control Theory, 9(1):1-25, 2020.

THE ATTITUDES AND SELF-EFFICIENCIES OF HIGH SCHOOL STUDENTS CONTINUED THE DISTANCE MATHEMATICS COURSE AGAINST DISTANCE EDUCATION DURING THE COVID-19 PANDEMIC

Başak BOR AKBULUT ${ }^{1}$
${ }^{1}$ Nenehatun Kız Anadolu Lisesi, 25240, Yakutiye, Erzurum, TÜRKIYE bborakbulut@gmail.com

The aim of this study is to determine the attitudes and self-efficacy of distance education of high school students who participated in the mathematics course through distance education during the Covid-19 pandemic period. The students of a girls' high school in Erzurum city center participated in the study. The survey method, which is one of the quantitative research designs, was used in the study. Data were collected with scales prepared to determine students' attitudes and self-efficacy. The collected data were analyzed descriptively and the attitudes and self-efficacy of the students towards distance mathematics teaching were presented.
Keywords: Mathematics, Mathematics Education, Distance Edication

References

[1] Afșar, B. ve Büyükdoğan, B. (2020, Ekim). Covid-19 pandemisi döneminde liiBF ve SBBF öğrencilerinin uzaktan eğitim hakkındaki değerlendirmeleri. Karatay Sosyal Araștırmalar Dergisi, (5), 161-182.
[2] Bozkurt, A. (2017). Türkiye'de Uzaktan Eğitimin Dünü, Bugünü ve Yarını, Açıköğretim Uygulamaları ve Arașıırmaları Dergisi, 3(2), 85-124.
[3] Can, E. (2020). Coronavirüs (Covid-19) pandemisi ve pedagojik yansımaları: Türkiye'de açık ve uzaktan eğitim uygulamaları. AUAd, 6(2), 11-53.
[4] Çoban, Serhat (2013). "Uzaktan ve Teknoloji Destekli Eğitimin Gelișimi", İstanbul: XVI. Türkiye'de Internet Konferansı Bildiri Kitabı.
[5] Durak, G., Çankaya,S.,İmirli,S. (2020). COVID-19 Pandemi Döneminde Türkiye'deki Üniversitelerin Uzaktan Eğitim Sistemlerinin İncelenmesi, NEF-EFMED Cilt 14, Sayı 1, Haziran 2020. Doi: 10.17522/balikesirnef. 743080
[6] Dursun, A., Kırbas, İ. ve Yüksel, M. (2015). Fırsatları Artırma ve Teknolojiyi İyileștirme Hareketi (FATiH) Projesi ve Proje Üzerine Bir Değerlendirme. 10.13140/RG.2.1.2755.6886.
[7] Ekici, G. (2003). Uzaktan Eğitim Ortamlarının Seçiminde Öğrencilerin Öğrenme Stillerinin Önemi, Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, Sayı: 24, 48-55.
[8] Höçük, S.(2011). Ankara Üniversitesi uzaktan eğitim programına katılan öğrencilerin akademik bașarılarını etkileyen faktörler. Yüksek Lisans Tezi.
[9] Kaya, Z. (2002). Uzaktan Eğitim. Pegem A Yayıncılık. Keskin, M. ve Özer Kaya, D. Covid19 sürecinde öğrencilerin web tabanlı uzaktan eğitime yönelik geri bildirimlerinin değerlendirilmesi(2020), IKÇÜSBFD, 5 (2), 59-67.
[10] Kırık, A. (2016). Uzaktan eğitimin tarihsel gelișimi ve Türkiye'deki durumu,Marmara Illetișim Dergisi,0(21),73-94.
[11] Özbay,Ö. (2015). Dünyada ve Türkiye'de Uzaktan Eğitimin Güncel Durumu, Uluslararası Eğitim Bilimleri Dergisi / The Journal of International Education Science Yıl: 2, Sayı: 5, , s. 376-394.
[12] Sarıtaș, E. , Barutçu, S. (IUYD' 2020 / 11(1)) Öğretimde dijital dönüṣüm ve öğrencilerin çevrimiçi öğrenmeye hazır bulunuşluluğu: Pandemi döneminde Pamukkale Üniversitesi öğrencileri üzerinde bir araștırma. DOI: 10.34231/iuyd. 706397
[13] Serçemeli, M. ve Kurnaz, E. (2020). Covid-19 pandemi döneminde öğrencilerin uzaktan muhasebe eğitimine yönelik bakış açıları üzerine bir araștırma. Uluslararası Sosyal Bilimler Akademik Araștırmalar Dergisi, 4 (1), 40-53.
[14] Tuncer, M. ve Tașpınar, M. (2008). Sanal Ortamda Eğitim ve Öğretimin Geleceği ve Olası Sorunlar, Sosyal Bilimler Dergisi, Cilt: X, Sayı: 1,125-144
[15] Ușun, S. (2006). Uzaktan Eğitim. Ankara: Nobel. Yılmaz, E. vd.(2020,Mayıs) Veli algısına göre pandemi dönemi uzaktan eğitim sürecinin niteliği, EGITEAM (Eğitimde Girișimcilik ve İnovasyon Topluluğu) araștırması.
[16] Yılmaz, K. ve Horzum, B.M. (2005). Küreselleșme, Bilgi Teknolojileri ve Üniversite. İnönü Üniversitesi Eğitim Fakültesi Dergisi, 6 (10), 103-121.

Existence and uniqueness results for nonlinear hybrid implicit Caputo-Hadamard fractional differential equations
 Chahra Kechar ${ }^{1}$, Abdelouaheb Ardjouni ${ }^{2}$,
 ${ }^{1}$ Department of Mathematics and Informatics, University of Souk Ahras, Algeria. e-mail chahra95kechar@gmail.com
 ${ }^{2}$ Applied Mathematics Lab, Faculty of Sciences, Department of Mathematics, University of Annaba, Algeria. e-mail abd_ardjouni@yahoo.fr

Text of the abstract:
In this paper, we use the Banach fixed point theorem to obtain the existence, interval of existence and uniqueness of solutions for nonlinear hybrid implicit Caputo-Hadamard fractional differential equations. We also use the generalization of Gronwall's inequality to show the estimate of the solutions.

Keywords: Implicit fractional differential equations, Caputo-Hadamard fractional derivatives, fixed point theorems.
2020 Mathematics Subject Classification: 34A12, 34K20, 45N05.

References

[1] Ardjouni,A.,\& Djoudi, A. Existence and uniqueness of solutions for nonlinear implicit Caputo-Hadamard fractional differential equations with nonlocal conditions. Advances in the Theory of Nonlinear Analysis and its Application, 3(1), 46-52.
[2] Benhamida,W.,Hamani,S.,\&Henderson,J.(2016). A Boundary Value Problem for Fractional Differential Equations with Hadamard Derivative and Nonlocal Conditions. Pan American Math, 26, 1-11.
[3] Kilbas, A. A. A., Srivastava, H. M., \& Trujillo, J. J. (2006). Theory and applications of fractional differential equations (Vol. 204). Elsevier Science Limited.
[4] Podlubny, I.(1998). Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (Vol. 198). Elsevier.
[5] Sutar, S. T., \& Kucche, K. D. (2015). Global existence and uniqueness for implicit differential equation of arbitrary order. Fractional Differential Calculus, 5(2), 199-208.

On the asymptotic behaviour of a non-local eigenvalue problem

Ahlem Yahiaoui ${ }^{1}$, Senoussi Guesmia ${ }^{2}$, Abdelmouhcene Sengouga ${ }^{3}$
$1{ }^{3}$ Department of mathematics, Faculty of mathematics and computer sciences, University of Mohamed Boudiaf, Msila, Algeria,
${ }^{1}$ ahlem.yahiaoui@univ-msila.dz ${ }^{3}$ abdelmouhcene.sengouga@univ-msila.dz
${ }^{2}$ Department of mathematics, University of The Bahamas, Nassau, The Bahamas, senoussi.sguesmia@math.uzh.ch

In this paper, we consider a non-local eigenvalue problem in some weighted spaces of Sobolev type. Applying the anisotropic singular perturbations method to establish the existence of the principal eigenvalue and its associated eigenfunction. Besides, we obtain some proprieties like the simplicity of this eigenvalue and the positivity of its eigenfunction. Then we describe the asymptotic behaviour of the solution as $\varepsilon \rightarrow 0$

Keywords: Anisotropic singular perturbations, eigenvalue problem, non-local problem, eigenvalues and eigenfunctions.
2020 Mathematics Subject Classification: 35B25; 35B40; 45K05; 35J20; 47A75.

References

[1] M. Chipot. Elliptic equations: an introductory course. Texts Basler Lehrbucher. Birkhäuser Adv, 2009.
[2] M. Chipot, S. Guesmia, and A. Sengouga. Anisotropic singular perturbations of variational inequalities. Calc. Var. Partial Differential Equations, 57(1):7, 2018.
[3] A. Yahiaoui, S. Guesmia, and A. Sengouga. Anisotropic non-local problems: Asymptotic behaviour and existence results. Complex Var. Elliptic Equ., to appear.
[4] T. Cazenave. An introduction to semilinear elliptic equations. Editora do Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 164, 2006.
[5] M. Chipot and S. Guesmia. On a class of integro-differential problems. Commun. Pure Appl. Anal., 9(5):1249-1262, 2010.

On the Controllability of Some Systems on Lie Groups

Okan DUMAN ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, TURKEY, oduman@yildiz.edu.tr

Linear control systems on matrix Lie groups have an important place in terms of their application to real-life problems [1]. By the definition in the context of Lie groups a linear control system is determined by the pair $\Sigma=(G, \mathcal{D})$, where the state space is a real finite dimensional Lie group G with the Lie algebra $L(G)$ and the dynamic \mathcal{D} is given by the family of differential equations on G

$$
g(t)=X(g(t))+\sum_{i=1}^{n} u_{i}(t) Y^{i}(g(t))
$$

where X is an element of normalizer of $L(G)$ and called drift vector field, and the control vectors $Y^{1}, Y^{2}, \ldots, Y^{n}$ belong to $L(G)$, where $L(G)$ denotes the Lie algebra of left-invariant vector fields. The control function $u=\left(u_{1}, \ldots, u_{n}\right)$ is in the class of piece-wise constant functions from $[0, \infty)$ to \mathbb{R}^{n}. The main purpose of geometric control theory is to investigate whether it is possible to reach any other state from a given specific state in a positive time via admissible trajectories. For example, from a given initial condition x_{0}, can a new condition x_{1} be reached by transferring x_{0} via the admissible control u in a positive time? Considering this for disease and epidemic models, is it possible to find a medical strategy to transform an initial level of disease, at another final level of health, in a positive time [2]? In this presentation, we work on the controllability properties of some kind of control theory problems.
Keywords: Linear control systems, matrix lie groups, dynamical systems, controllability.
2020 Mathematics Subject Classification: 93B05, 93C05, 22E25.

References

[1] R. V. Gamkrelidze E. F. Mishchenko L. S. Pontryagin, V. G. Boltyanskii. The Mathematical Theory of Optimal Processes,in: Control and Systems Engineering a Report on Four Decades of Contributions, in: Studies in Systems, Decision and Controls. John Wiley Sons, New York, 2015.
[2] A. Da Silva V. Ayala. The control set of a linear control system on the two dimensional lie group. Journal of Differential Equations, 268(11):6683-6701, 2020.
[3] Fritz Colonius and Wolfgang Kliemann. The Dynamics of Control. Birkhäuser, Boston, 2000.
[4] L. A. San Martin. Lie Groups. Springer, Berlin, 2021.

Solving the absolute value equation based on a new smoothing function

Randa Chalekh ${ }^{1}$, EL Amir Djeffal ${ }^{2}$
${ }^{1}$ Mathematics Department, Faculty of Mathematics and Computer Science, University of Batna 2, Batna, Algeria, r.chalekh@univ-batna2.dz
${ }^{2}$ Mathematics Department, Faculty of Mathematics and Computer Science, University of Batna 2, Batna, Algeria, l.djeffal@univ-batna2.dz

In this paper, we solving the absolute value equation $A x-|x|=b$, denoted by $A V E$, where A is an arbitrary $n \times n$ real matrix and $b \in \mathbb{R}^{n}$ by the smoothingtype algorithm. Using a smooth approximation of the absolute function, we reformulate $A V E$ as a system of smooth equations and propose a new smoothing function. We show that the algorithm is well-defined when the singular value of A exceed one and under the same assumption the algorithm is convergent. Finally, we make some comparisons between this new function and some previously defined functions to predict its effectiveness.
Keywords: Absolute value equations, smoothing function, smoothing Newton algorithm.
2020 Mathematics Subject Classification: First, Second, Third.

References

[1] X.Jiang, Y.Zhang. A smoothing-type algorithm for absolute value equations. J. Ind. Manag. Optim. 9, 789-798 (2013).
[2] Z.-H.Huang, Y.Zhang, W.Wu. A smoothing-type algorithm for solving system of inequalities. J. Comput. Appl. Math. 220, 355-363 (2008)
[3] O.L.Mangasarian. Absolute value programming. Comput. Optim. Appl. 36, 43-53 (2007).
[4] O.L. Mangasarian, R.R.Meyer. Absolute value equation. Linear Algebra Appl. 419, 359-367 (2006).
[5] J.Rohn. A theorem of the alternatives for the equation $A x+B|x|=b$, Linear Multilinear Algebra, 421-426 52 (2004).
[6] B.Saheya, C.-H.Yu, J.-S.Chen. Numerical comparisons based on four smoothing functions for absolute value equation. J. Appl. Math. Comput. 56, 131-149 (2016).
[7] L.Q.Yong. A smoothing Newton method for absolute value equation. Int. J. Control. Autom. Syst. 9(2), 119-132 (2016).

Schauder and Banach fixed point theorem for semilinear fractional problem

Chaima Saadi ${ }^{1}$, Hakim Lakhal ${ }^{2}$, Kamel Slimani ${ }^{3}$
${ }^{1}$ (LAMAHIS) Laboratory, Department of mathematics, Faculty of science, University of 20 August 1955, Skikda, Algeria, e-mail: saadichaima248@gmail.com
2 (LAMAHIS) Laboratory, Department of mathematics, Faculty of science, University of 20 August 1955, Skikda, Algeria, e-mail: h.lakhal@univ-skikda.dz
${ }^{3}$ (LAMAHIS) Laboratory, Department of mathematics, Faculty of science, University of 20 August 1955, Skikda, Algeria, e-mail: k.slimani@univ-skikda.dz

The main objective of this paper is study the existence and uniqueness of distributional solution in a fractional Sobolev space for a semilinear fractional problem that contains a nonlocal operator. Thanks to suitable conditions on the semilinear term we prove the existence result and we use the application of the Schauder fixed-point theorem. Furthermore, By the Banach contaction principle theorem we establish in this paper the uniqueness of distributional solution in particular case. In fact, Fixed-point theorems is particulary useful for proving existence of solutions to nonlinear partial differential equations and it is also applicable in the fractional cases.
Keywords: Partial differential equation, Distributional solution, semilinear fractional equation.
2020 Mathematics Subject Classification: 35J16, 35A16, 31C25.

References

[1] E. Di Nezza E. Valdinoci, G. Palatucci. Hitchiker's guide to the fractional sobolev space. Bull. Sci. Math, 136(5):521-573, 2012.
[2] P. Agarwal M. Jleli, B. Samet. Banach contraction principal and application. In: Fixed Point theory in Metric Space. Springer, Singapore, 2018.
[3] T. Gallouet R. Herbin. Equations aux drive partielle. Polycopi de cours (Master 2) Universit Aix Marseille.
[4] E. Abada H. Lakhal, M. Maouni. Topological degree method for fractional laplacian system. Master's thesis, Bulltin of Mathematical Analysis and Applications, 102021.
[5] C. Saadi H. Lalhal K. Slimani, S. Dob. Existence and uniqueness of distributional solution for semilinear fractional elliptic equation involving new operator and some numerical results. PhD thesis, Math Meth Appl Sci, December 2021.

Growth of solutions of linear fractional differential equations with polynomial coefficients

Saada Hamouda ${ }^{1}$, Sofiane Mahmoudi ${ }^{2}$
${ }^{1}$ Laboratory of Pure and Applied Science, University of Mostaganem, Algeria, saada.hamouda@univ-mosta.dz
${ }^{2}$ Laboratory of Pure and Applied Science, University of Mostaganem, Algeria, sofiane.mahmoudi@univ-mosta.dz

Consider the linear differential equation

$$
\begin{equation*}
f^{(n)}+P_{n-1}(z) f^{(n-1)}+\ldots+P_{1}(z) f^{\prime}+P_{0}(z) f=0 \tag{1}
\end{equation*}
$$

where $P_{0}(z) \not \equiv 0, P_{1}(z), \ldots, P_{n-1}(z)$ are polynomials. It is well known that every solution f of equation (1) is an entire function of finite rational order $\sigma(f)$ satisfying

$$
\sigma(f) \leq 1+\max _{0 \leq k \leq n-1} \frac{\operatorname{deg} P_{k}}{n-k} ;
$$

see $[2,4,7,8]$. In [1], Gundersen et al gave the possible orders of solutions of (1). The question which arises here: what about linear fractional differential equations?

Fractional order differential equations have become a very important tool for modeling phenomena in many diverse fields of science and engineering which traditional differential modeling cannot accomplish.(see, for example, Kilbas et al. [3]). In present, three kinds of fractional derivatives are often used, the Grünwald Letnikov derivative, the Riemann Liouville derivative and the Caputo derivative. There are many discussions for properties of these derivatives, see $[5,6]$. All these studies are limited in real line.

This talk is devoted to the study of the growth of solutions of the linear fractional differential equation

$$
\begin{gathered}
\frac{r^{q_{n}}}{z z^{\left[q_{n}\right]}} \mathcal{D}^{q_{n}} f(z)+P_{n-1}(z) \frac{r^{q_{n-1}}}{z} \mathcal{z}^{\left[q_{n-1}\right]} \mathcal{D}^{q_{n-1}} f(z)+\ldots+P_{1}(z) \frac{r^{q_{1}}}{z\left[q_{1}\right]} \mathcal{D}^{q_{1}} f(z) \\
+P_{0}(z) f(z)=0 .
\end{gathered}
$$

involving the Caputo fractional derivatives by using the generalized WimanValiron theorem in the fractional calculus. Illustrative examples are given.

Keywords: Linear fractional differential equations, growth of solutions, Caputo fractional derivative operator.
2020 Mathematics Subject Classification: 34M10, 26A33.

References

[1] G.G. Gundersen, M. Steinbart and S. Wang, The possible orders of solutions of linear differential equations with polynomial coefficients, Trans. Amer. Math. Soc. 350 (1998) 1225-1247.
[2] G. Jank and L. Volkmann, Einfuhrung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen, Birkhauser, Basel-Boston-Stuttgart, 1985.
[3] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
[4] I. Laine, Nevanlinna theory and complex differential equations, W. de Gruyter, Berlin, 1993.
[5] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
[6] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
[7] G. Valiron, Lectures on the general theory of integral functions, translated by E. F. Collingwood, Chelsea, New York, 1949.
[8] H. Wittich, Neuere Untersuchungen uber eindeutige analytische Funktionen, 2nd Edition, Springer-Verlag, Berlin-Heidelberg-New York, 1968.

BLOW UP OF SOLUTION OF A NONLINEAR WAVE EQUATION WITH GENERAL SOURCE AND DAMPING TERMS

BOULMERKA Imane ${ }^{1}$
${ }^{1}$: Laboratory of LEDPA, Department of Mathematics, University of Batna 2, Batna, Algeria,
e-mail:i.boulmerka@univ-batna2.dz

Abstract

: In this work, we study a wave equation with general source and damping terms. Under some assumptions on the source and the damping terms, we show that the solution blows up in fnite time.

Keywords: Wave equation, General source term, General damping term, Blow up.

2020 Mathematics Subject Classification: 35L05, 35B40, 35L70, 93D20.

References

[1] V. GEORGIEV and G. TODOROVA, Existence of solutions of the wave equation with nonlinear damping and source terms. J. Diff. Eqns. 109 (1994), 295-308,
[2] S. A. MESSAOUDI, Blow up in a nonlinearly damped wave equation. Math. Nachr. 231 (2001), 105-111.
[3] S. A. MESSAOUDI, Blow up and global existence in a nonlinear viscoelastic wave equation. Math. Nachr. 206 (2003), 58-66.

Non autonomous iterative differential inclusion

Ghalia Samia ${ }^{1}$, Doria Affane ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Exact Sciences and Informatics, University of Mohamed Seddik Ben Yahia, Jijel, Algeria, e-mail: sghalia01@gmail.com
${ }^{2}$ Department of Mathematics, Faculty of Exact Sciences and Informatics, University of Mohamed Seddik Ben Yahia, Jijel, Algeria, e-mail: affanedoria@yahoo.fr

In this work, we study the existence and uniqueness of a certain type of non autonomous differential inclusion involving a maximal monotone operator (depending on the time) and compositions of the unknown function, it has the following form

$$
\begin{equation*}
-\dot{u}(t) \in A(t) u(t)+f\left(t, u(t), u^{[2]}(t), \cdots, u^{[n]}(t)\right) ; u(0)=u_{0} \tag{1}
\end{equation*}
$$

where $A(t): D(A(t)) \subset \mathbb{R} \rightrightarrows \mathbb{R},[0, T] \subset D(A(t))$ is a maximal monotone operator and $f:[0, T] \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a Carathéodory Lipschitz mapping and satisfies the linear growth condition. Then, we present a Bolza-type example for an optimal control problem associated with (1) where the controls are Young measures.

Keywords: Iterative, differential inclusion, Bolza problem.
2020 Mathematics Subject Classification: 34K35, 28B20, 34K35.

References

[1] D. Azzam-Laouir D. Affane. A control problem governed by a second order differential inclusion. Applicable Analysis, 88(12):1677-1690, 2009.
[2] Paul Raynaud De Fitte Charles Castaing and Michel Valadier. Young measures on topological spaces: with applications in control theory and probability theory. Mathematics and its Applications, New York, NY, 2004.
[3] Doria Affane. Quelques problèmes de contrôle optimal pour des inclusions différentielles. PhD thesis, Jijel University, Doctoral dissertation, 2012.

Growth of solutions of linear fractional differential equations with entire coefficients

Sofiane Mahmoudi ${ }^{1}$, Saada Hamouda ${ }^{2}$
${ }^{1}$ Laboratory of Pure and Applied Science, University of Mostaganem, Algeria, sofiane.mahmoudi@univ-mosta.dz
${ }^{2}$ Laboratory of Pure and Applied Science, University of Mostaganem, Algeria, saada.hamouda@univ-mosta.dz

In the study of the growth of solutions of the classical linear differential equation

$$
\begin{equation*}
f^{(n)}+A_{n-1}(z) f^{(n-1)}+\ldots+A_{1}(z) f^{\prime}+A_{0}(z) f=0 \tag{1}
\end{equation*}
$$

where the coefficients are entire functions many authors are interested in the following question: what conditions on the coefficients will guarantee that every solution $f(z) \not \equiv 0$ of (1) has infinite order? In the literature, there are many papers concerning this question; see for example [1, 3, 5, 6, 7]. The main tool used is this investigation is the logarithmic derivative estimates, see [4]. Unfortunately, up to now, there is no similar estimates given in [4] for the fractional derivatives except the Wiman-Valiron theorem in the fractional calculus that is valid only on a neighborhood of the points z where the function reaches its maximum, see [2]. Despite this obstruction, we will investigate the growth of solutions of the linear fractional differential equations

$$
\begin{gathered}
\frac{r^{q_{n}}}{z\left[q_{n}\right]} \mathcal{D}^{q_{n}} f(z)+A_{n-1}(z) \frac{r^{q_{n-1}}}{z\left[q_{n-1}\right]} \mathcal{D}^{q_{n-1}} f(z)+\ldots+A_{1}(z) \frac{r^{q_{1}}}{z^{\left[q_{1}\right]}} \mathcal{D}^{q_{1}} f(z) \\
+z A_{0}(z) f(z)=0 .
\end{gathered}
$$

involving the Caputo fractional derivatives. Under some conditions we prove that every non trivial solution is of infinite order.

Keywords: Linear fractional differential equations, infinite order of growth of solutions, Caputo fractional derivative operator.
2020 Mathematics Subject Classification: 34M10, 26A33.

References

[1] B. Belaïdi and S. Hamouda, Orders of solutions of an n-th order linear differential equations with entire coefficients, Electron. J. Differential Equations, $\mathrm{N}^{\circ} 63$, Vol. 2001 (2001), 1-5.
[2] I. Chyzhykov and N. Semochko, Generalization of the Wiman-Valiron method for fractional dérivatives, Int. J. Appl. Math., Vol. 29 No. 1 (2016), 19-30.
[3] G.G. Gundersen; On the question of whether $f^{\prime \prime}+e^{-z} f^{\prime}+B(z) f=0$ can admit a solution $f \not \equiv 0$ of finite order, Proc. Roy. Soc. Edinburgh 102A (1986), 9-17.
[4] G.G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. Lond. Math. Soc. (2), 37 (1988), 88-104..
[5] S. Hamouda, Iterated order of certain linear differential equations with entire coefficients, Electron. J. of Differential Equations, Nº 83, Vol. 2007 (2007), 1-7.
[6] S. Hamouda, Growth of solutions of class of linear differential equations with entire coefficients, New York J. Math., 16 (2010) 737-747.
[7] J. Tu and C-F. Yi, On the growth of solutions of a class of higher order linear differential equations with coefficients having the same order, J. Math. Anal. Appl. 340 (2008) 487-497.

Sufficient conditions for global asymptotic stability of a kind of nonlinear neutral differential equations
Presenter ${ }^{1}$, Benhadri Mimia
${ }^{1}$ Department of mathematic, Faculty of science, University 20 August 1955, City Skikda, Country, Algeria, e-mail, mbenhadri@yahoo.com

Abstract: This work addresses the stability study for nonlinear neutral differential equations. Thanks to a new technique based on the fixed point theory, we find some new sufficient conditions ensuring the global asymptotic stability of the solution. In this work we extend and improve some related results presented in recent works of literature. An example is exhibited to show the effectiveness and advantage of the results proved.

Keywords: contraction mapping principle; asymptotic stability; neutral differential equation.
2020 Mathematics Subject Classification: 34K20, 34K30, 34K40.

References

[1] A. Ardjouni, A. Djoudi and I. Soualhia, Stability for linear neutral integrodifferential equations with variable delays, Electronic journal of Differential Equations, Vol. 2012, No. 172, 1-14, (2012).
[2] A. Ardjouni and A. Djoudi, Stability for nonlinear neutral integro-differential equations with variable delay, Mathematica Moravica, Vol. 19-2, 1-18, (2015).
[3] L. C. Becker and T. A. Burton, Stability, fixed points and inverse of delays, Proc. Roy. Soc. Edinburgh 136A, 245-275, (2006).
[4] A. Burton, Stability by Fixed Point Theory for Functional Differential Equations, Dover Publications, New York, (2006).
[5] A. Burton, Fixed points and stability of a nonconvolution equation, Proc. Am. Math. Soc., Vol., 132, 3679-3687, (2004).
[6] H. Jin and J. W. Luo, Stability of an integro-differential equation, Computers and Mathematics with Applications, Vol. 57, 1080-1088, (2009).
[7] C. Tunc and I. Akbulut, Stability of a linear integro-differential equation of first order with variable delays, Bulletin of mathematical analysis and applications, Vol. 10, No, 2, 19-30, (2018). $\substack{\text { ataiturk } \\ \text { UNVERSTITY } \\ \text { PUBLCATITNS }}$

Dynamical behavior of a differential-algebraic system with fractional order

Kerioui Nadjah ${ }^{1}$
${ }^{1}$ Department of mathematics and computer science, Centre university of Mila, Mila, Algeria, n.kerioui@centre-univ-mila.dz

The objective of the present work is to investigate the dynamics of a fractionalorder differential-algebraic predator-prey system with Holling type III functional response. This model can be established as follow:

$$
\left\{\begin{align*}
D^{q_{1}} x & =x\left(r\left(1-\frac{x}{K}\right)-\frac{a x y}{d+x^{2}}\right) \tag{1}\\
D^{q_{2}} y & =y\left(s\left(1-\frac{y}{N}\right)+\frac{b x^{2}}{d+x^{2}}-E\right) \\
0 & =E(p y-c)-v
\end{align*}\right.
$$

The boundedness and positivity of solutions for this model are derived. Local stability of the ecosystem near the coexistence equilibria have been thoroughly investigated when the economic profit v varies in both commensurate and incommensurate fractional orders. The influence of the commensurate fractional orders on the existence of the Hoph bifurcation for the fractional-order ecosystem is explored. Finally, numerical illustrations are performed in order to validate some of the important analytical findings.
Keywords: Differential-algebraic system, Fractional order, Stability, Hopf bifurcation, Harvesting.
2020 Mathematics Subject Classification: First, Second, Third.

References:

[1] I. Podlubny. Fractional Differential Equations, Academic Press, New York, 1999.
[2] N. Kerioui, M. S. Abdelouahab. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting, Electronic Research Archive, 29(1), 1641-1660, 2021.
[3] H. A. A. El-Saka, L. Seyeon, J. Bongsoo. Dynamical analysis of fractional-order predatorprey biological economic system with Holling type II functional response, Nonlinear Dynamics, 1(96), 407-416, 2019.
[4] M. S. Abdelouahab, N. E. Hamri, J. Wang. Hopf bifurcation and chaos in fractional-order modified hybrid optical system, Nonlinear Dynamics, (69), 275-284, 2012.

Historical-Philosophical Development and Teaching of Mathematical Objects

Fatih Tass ${ }^{1}$
Mathematics Education, Faculty of Education, Bartın University, Turkey, fatihtas@bartin.edu.tr

The nature of mathematics, mathematical objects and the emergence of these objects are important in terms of history and philosophy (Font, Godino \&Gallardo, 2013). Discussion of the emergence and teaching of mathematical objects as a philosophy of mathematics problem has been going on since Plato (Rozov, 1989). Knowing the ontology, epistemology of mathematical objects and where they come from has a role in designing instructional environments. Is the existence of mathematical objects the same as the existence of an object in everyday life? Are the existence of the phone and the development of the concept of function similar?In this context, this research aims to discover the nature of mathematical objects by analyzing their existence forms, historical roles and existence in mathematics teaching. It attempts to explain how mathematical objects emerge from mathematical applications and, ultimately, to provide a functional answer to the fundamental question of how mathematical knowledge is structured in schools.

Keywords: Mathematical objects, teaching mathematics

References

1] Font, V., Godino, J.D. \& Gallardo, J. (2013) The emergence of objects from mathematical
practices. Educ Stud Math 82, 97-124.
[2] Rozov, M. A. (1989). The mode of existence of mathematical objects. Philosophia Mathematica,
s2-4(2), 105-111.
 UNIVERSTYY
PUBLICATIONS

Some Aspects of Interchanging Difference Equation Orders

Anthony G. Shannon ${ }^{1}$, Engin Özkan ${ }^{2}$
${ }^{1}$ Warrane College, University of New South Wales, Kensington, Australia, t.shannon@warrane.unsw.edu.au
${ }^{2}$ Department of Mathematics, Faculty of Arts and Sciences,Erzincan Binali Yıldırım University, Erzincan, Turkey, eozkan@erzincan.edu.tr

Difference equations can be useful in applications which are matrix-oriented and in time located data where the functional behaviour between measurements is not known or may be subject to ill-conditioning [5]. This paper considers some aspects of connections between similar, but different, expressions of the same sequences of numbers. For example, Roettger and Williams have used cubic extensions of the Lucas sequence to develop simple, but not easy, tests for primality $[1,2,3]$, Williams having long been a foremost authority on such tests [4]. This paper builds on Roettger and Williams' extensions of the primordial Lucas sequence to consider some relations among difference equations of different orders. This paper utilises some of their second and third order recurrence relations to provide an excursion through basic second order sequences and related third order recurrence relations with a variety of numerical illustrations which demonstrate that mathematical notation is a tool of thought.
Keywords: Second order recurrence relations, primordial sequence, Vandermonde
determinant.
2020 Mathematics Subject Classification: 11B37, 11B39, 11B50.

References

[1] H.C. Williams S. Műller and E. Roettger. A cubic extension of the lucas functions. Annales des Sciences Mathématiques du Québec, 33(2):185-224, 2009.
[2] E.L. Roettger and H.C. Williams. Public-key cryptography based on a cubic extension of the lucas functions. Fundamenta Informaticae, 114(3-4):325-344, 2012.
[3] H.C. Williams E.L. Roettger and R.K. Guy. Some primality that eluded lucas. Designs, Codes and Cryptography, 77(2):515-539, 2015.
[4] H.C. Williams. Édward lucas and primality testing. Canadian Mathematical Society Series of Monographs and Advanced Texts, 22, 1998.
[5] B.G. Lucy Y.Gulibur, M.L. Bernard and L.Domven. A secured cryptographic technique using rhotrices in polygraphic cyber systems. Science Forum, 22(1):35-42, 2022.

Universal Covering of a Lie Group

Merve ERSOY ${ }^{1}$, Eyüp KIZIL ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, TURKEY, merve.ersoy@std.yildiz.edu.tr
${ }^{2}$ Department of Mathematics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, TURKEY, kizil@yildiz.edu.tr

It is well known that any homomorphism between Lie algebras extends to the Lie groups if the domain is simply connected. This result together with the construction of a Lie group structure on the universal covering of a given Lie group provide that we obtain a description of connected Lie groups from simply connected Lie groups. In this talk, we mainly intend to explain how a Lie group structure is obtained on the simply connected universal covering of a given Lie group.

Keywords: Covering space, universal cover, lie groups.
2020 Mathematics Subject Classification: 22A10, 22E20, 57S05.

References

[1] L. A. San Martin. Lie Groups. Springer, Berlin, 2021.

Semi continuous perturbations for nonconvex sweeping process

Hanane Chouial ${ }^{1}$, Mustapha Fateh Yarou ${ }^{2}$,
${ }^{1}$ LMPA Laboratory, Jijel University, Algeria, Hananechouial@yahoo.com
${ }^{2}$ LMPA Laboratory, Jijel University, Algeria, mfyarou@yahoo.com

Our aim in this work is to prove a general existence result for

$$
\left\{\begin{array}{l}
\dot{x}(t) \in-N_{C(t)}(x(t))+F(t, x(t))+G(t, x(t)) \text { a.e. in }[0, T] \\
x(t) \in C(t), \forall t \in[0 ; T] \\
x(0)=x_{0} \in C(0)
\end{array}\right.
$$

where $C:[0, T] \rightharpoondown \mathbb{R}^{n}$ is a set-valued mapping with nonconvex noncompact values, $N_{C(t)}(x(t))$ denotes the Clarke normal cone to $C(t)$ at $x(t) . F$: $[0, T] \times \mathbb{R}^{n} \rightharpoondown \mathbb{R}^{n}$ and $G:[0, T] \times \mathbb{R}^{n} \rightharpoondown \mathbb{R}^{n}$ are two set-valued mappings with closed nonconvex values, namely F is taken measurable, integrably bounded such that $x \longmapsto F(t, x)$ is lower semicontinuous. G satisfies a linear growth condition with compact values and takes mixed values in the following sense: for every $t \in[0, T]$, at each $x \in \mathbb{R}^{n}$ such that $G(t, x)$ is convex, $G(t, \cdot)$ is upper semicontinuous, and whenever $G(t, x)$ is nonconvex, $G(t, \cdot)$ is lower semicontinuous on some neighborhood of x. The result is based on a set-valued version of the fixed point theorem. In the study of existence of solution for differential inclusion, the use of convexity assumptions is widely acknowledged. This property is not true, in general, when convexity is dropped. The nonconvex case has been studied by various approaches. In [1] and [2], the authors introduced a class of mapping mixing both upper semicontinuous and lower semicontinuous regularity assumptions, by defining a set-valued mapping with decomposables values, which contains a set-valued selection with convex values.
Keywords: Nonconvex differential inclusions, Sweeping process, Normal cone, Prox-regular set, Mixed semicontinuous, Fixed point theorem.
2020 Mathematics Subject Classification: 34A60.

References

[1] Andrzej Fryszkowski and Lech Górniewicz. Mixed semicontinuous mappings and their applications to differential inclusions. Set-Valued Analysis, 8(3):203-217, 2000.
[2] Alexander Alexandrovich Tolstonogov. Solutions of a differential inclusion with unbounded right-hand side. Siberian Mathematical Journal, 29(5):857-868, 1988.
[3] Doria Affane, Meriem Aissous, and Mustapha Fateh Yarou. Almost mixed semi-continuous perturbation of moreau's sweeping process. Evolution Equations 8 Control Theory, 9(1):27, 2020.

Simpson Type Inequalities for Katugampola Fractional Integral

Zeynep Şanlı
Department of Mathematics, Faculty of Sciences, Mersin University, Mersin, Turkey, z.akdemirci@gmail.com

In mathematics, Katugampola fractional operators are integral operators that generalize the Riemann-Liouville and the Hadamard fractional operators into a unique form.

Let $[u, v] \subset \mathbb{R}$ be a finite interval. Then the left and right-side Katugampola fractional integrals of order $\alpha>0$ of $\Psi \in X_{c}^{p}(u, v)$ are defined by

$$
{ }^{\rho} I_{a+}^{\alpha} \Psi(\varepsilon)=\frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_{a}^{\varepsilon} \frac{\eta^{\rho-1}}{\left(\varepsilon^{\rho}-\eta^{\rho}\right)^{1-\alpha}} \Psi(\eta) d \eta,
$$

and

$$
{ }^{\rho} I_{b-}^{\alpha} \Psi(\varepsilon)=\frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int_{\varepsilon}^{v} \frac{\eta^{\rho-1}}{\left(\eta^{\rho}-\varepsilon^{\rho}\right)^{1-\alpha}} \Psi(\eta) d \eta,
$$

with $u<\varepsilon<v$ and $\rho>0$, respectively.
In this paper, we will give some inequalities for Katugampola Fractional integrai inqualities using by Simpson Type inequalities.
Keywords: Simpson inequality, Katugampola fractional integral, harmonic convex.
2020 Mathematics Subject Classification: 26D15, 26D10, 34A08.

References

[1] Rashid S, Akdemir AO, Jarad F, Noor MA, Noor KI, Simpson's type integral inequalities for k-fractional integrals and their applications. AIMS. Math. 4 (4) (2019), 1087-1100.
[2] Sarikaya MZ, Bardak S, Generalized Simpson type integral inequalties, Konuralp J. Math. 7 (2019), 186-191.
[3] Sarikaya MZ, Set E and Ozdemir E, On new inequalities of Simpson's type for convex functions, Res. Rep. Coll., 13 (2010), 13 pages.
[4] Sarikaya MZ, Set E and Ozdemir E, On new inequalities of Simpson's type for s-convex functions, Comput. Math. Appl., 60 (2010) 2191-2199.
[5] Sanli Z, Simpson type integral inequalities for harmonic convex functions via RiemannLiouville fractional integrals, Tblisi Mathematical Journal, 8 (2021), 167-175.

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

A note on L and R topologies

Kadirhan POLAT
Department of Mathematics, Faculty of Science and Letter, Agri Ibrahim Cecen University, Agri, Turkey, kadirhanpolat@agri.edu.tr

In this work, we obtain some useful results on left operand and right operand topologies produced by a raw binary operation which is weaker than both partial and multivalued binary operations concepts.

Keywords: L topology, R topology, raw binary operation.
2020 Mathematics Subject Classification: 22A15, 22A30, 22A99.

References

[1] David Steven Dummit and Richard M Foote. Abstract algebra, volume 3. Wiley Hoboken, 2004.
[2] Richard Hubert Bruck. A survey of binary systems, volume 20. Springer, 1971.
[3] Alfred Hoblitzelle Clifford and Gordon Bamford Preston. The algebraic theory of semigroups, Volume II, volume 2. American Mathematical Soc., 1967.
[4] Hanamantagouda P Sankappanavar and Stanley Burris. A course in universal algebra. Graduate Texts Math, 78, 1981.
[5] George Grätzer. Universal algebra. Springer Science \& Business Media, 2008.
[6] Kadirhan Polat and Abdullah Cagman. Polcag spaces: I. group-like structures. Thai Journal of Mathematics, 19(1):87-92, 2019.
[7] Kadirhan Polat. Topologies generated by raw binary structures. Transactions in Mathematical and Computational Sciences, 1(2):23-30, 2021.
[8] Raymond E Smithson. Topologies generated by relations. Bulletin of the Australian Mathematical Society, 1(3):297-306, 1969.
[9] AA Allam, MY Bakeir, and EA AboTabl. Some methods for generating topologies by relations. Bulletin of the Malaysian Mathematical Sciences Society, 31(1), 2008.
[10] E Induráin and V Knoblauch. On topological spaces whose topology is induced by a binary relation. Quaestiones Mathematicae, 36(1):47-65, 2013.
[11] A Steen Lynn and J Arthur Seebach Jr. Counterexamples in topology, campbell, de, 1978.
[12] Eric Schechter. Handbook of Analysis and its Foundations. Academic Press, 1996.
[13] Richard E Merrifield and Howard E Simmons. Topological methods in chemistry. WileyInterscience, 1989.
[14] John L Kelley. General topology. Courier Dover Publications, 2017.

Non-convex valued perturbation of first order problems with maximal monotone operators

Fatima Fennour ${ }^{1}$, Soumia Saïdi ${ }^{2}$
${ }^{1}$ LMPA Laboratory, Department of Mathematics,
Mohammed Seddik Ben Yahia University, Jijel, Algeria, fennourfatima38@gmail.com
${ }^{2}$ LMPA Laboratory, Department of Mathematics,
Mohammed Seddik Ben Yahia University, Jijel, Algeria, soumiasaidi44@gmail.com

Abstract

Let H be a finite dimensional Hilbert space and let $I:=[0,1]$ be an interval of \mathbb{R}. In this work, we study the existence of absolutely continuous solutions of the following first-order differential inclusion $$
\left\{\begin{array}{l} -\dot{u}(t) \in A(t, u(t)) u(t)+F(t, u(t)) \quad \text { a.e. } t \in I \\ u(0)=u_{0} \end{array}\right.
$$ where $A(t, x): D(A(t, x)) \subset H \rightrightarrows H$ is a time and state-dependent maximal monotone operator and $F: I \times H \rightrightarrows H$ is a non-convex perturbation.

Keywords: Differential inclusion, maximal monotone operator, non-convex perturbation. 2020 Mathematics Subject Classification: 34A60, 34G25, 49J52, 49 J 53.

References

[1] C. Godet-Thobie C. Castaing and L.X.Truong. Fractional order of evolution inclusion coupled with a time and state dependent maximal monotone operator. Mathematics MDPI, 8(9):1-30, 2020.
[2] H. Brezis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. Elsevier, North Holland, 1973.

A Dynamic electroviscoelastic problem with thermal effects

Sihem Smata ${ }^{1}$, Nemira Lebri ${ }^{2}$
${ }^{1}$ Laboratory of Applied Mathematics, Department of Mathematics, Faculty of Sciences, University Ferhat Abbas of Setif 1, Algeria, e-mail: ssmata@yahoo.com
${ }^{2}$ Laboratory of Applied Mathematics, Department of Mathematics, Faculty of Sciences, University Ferhat Abbas of Setif 1, Algeria, e-mail: nemiralebri@yahoo.com

We consider a mathematical model which describes the dynamic process of contact between a piezoelectric body and an electrically conductive foundation. We model the material's behavior with a nonlinear electro-viscoelastic constitutive law with thermal effects. Contact is described with the Signorini condition, a version of Coulomb's law of dry friction. A variational formulation of the model is derived, and the existence of a unique weak solution is proved. The proofs are based on the classical result of nonlinear first order evolution inequalities, the equations with monotone operators, and the fixed point arguments.

Keywords: Electro-viscoelastic, Fixed point, Coulomb's friction law. 2020 Mathematics Subject Classification: 74M15, 74M10, 74F05, 49J40.

References

[1] S.Adly, O.Chau, On some dynamic thermal non clamped contact problems, Math. Programm., Ser. B (2013), no. 139, 5-26.
[2] V.Barbu, Optimal Control of Variational Inequalities, Pitman, Boston, 1984.
[3] R.C.Batra, J.S.Yang, Saint Venant's principle in linear piezoelectricity, Journal of Elasticity, 38(1995), 209-218.
[4] M. Barboteu, J.R.Fernández, Y. Ouafik, Numerical analysis of a frictionless viscoelastic piezoelectric contact problem, M2AN Math. Model. Numer. Anal., (in press).
[5] H.Brézis, Analyse Fonctionnelle, Théorie et Application, Masson, Paris, 1987.
[6] O.Chau, On a class of second order evolution inequality and application, Int. J. of Appl. Math. and Mech., 4 (2008), no. 1, 24-48.
[7] S.Drabla, Z.Zellagui, Analysis of a electro-elastic contact problem with friction and adhesion, Studia Univ. Babes-Bolyai Math. 54(2009), 75-99.
[8] G.Duvaut, J.L.Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1988.
[9] W.Han, M.Sofonea, K.Kazmi, Analysis and numerical solution of a frictionless contact problem for electro-elastic-visco-plastic materials, Comput. Methods Appl. Mech. Engrg., 196(2007), 3915-3926.

On unique solvability and Picard's iterative method for absolute value equations

Nassima Anane ${ }^{1}$, Mohamed Achache ${ }^{2}$
${ }^{1}$ Laboratoire de Mathématiques Fondamentales et Numériques. Sétif1. Algérie. Université Ferhat Abbas. Sétif1. Sétif 19000. Algérie, e-mail: nasimaannan@gmail.com.
${ }^{2}$ Laboratoire de Mathématiques Fondamentales et Numériques. Sétif1. Algérie. Université Ferhat Abbas. Sétif1. Sétif 19000. Algérie, e-mail: achache_m@univ-setif.dz

In this paper, we deal with unique solvability and numerical solution of absolute value equations (AVE), $A x-B|x|=b,\left(A, B \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}\right)$. Under some weaker conditions, a simple proof is given for unique solvability of AVE. Furthermore, we demonstrate with an example that these results are reliable to detect unique solvability of AVE. These results are also extended to unique solvability of standard and horizontal linear complementarity problems. Finally, we suggest a Picard iterative method to compute an approximated solution of some uniquely solvable AVE problems where its globally linear convergence is guaranteed via one of our weaker sufficient condition.
Keywords: Absolute value equations, Linear complementarity problems, Linear system, Singular value, iterative methods.
2020 Mathematics Subject Classification: 65F08, 90C33, 93C05..

References

[1] Achache, M., On the unique solvability and numerical study of absolute value equations. J. Numer. Anal. Approx. Theory, vol. 48 (2019) no. 2, 112-121.
[2] Anane, N., Achache, M., Preconditioned conjugate gradient methods for absolute value equations J. Numer. Anal. Approx. Theory, vol. 48 (2020) no. 1, 3-14.
[3] Achache, M., Hazzam, N., Solving absolute value equations via linear complementarity and interior-point methods. Journal of Nonlinear Functional Analysis. Article. ID 39(2018), 110.
[4] Barrios, J., Ferreira, O.P., and Nameth, S.Z., Projection onto simplicial cones by Picardâ's method. Linear Algebra and its Applications. 480(2015), 27-43.
[5] Cottle,R. W., Pang, J.S., and Stone,R. E., The Linear Complementarity Problem. Academic Press. New-York (1992).
[6] Hladick, M., Bounds for the solution of absolute value equations. Computational Optimization and Applications. 69(1)(2018), 243-266.
[7] Kreyszig, E., Introductory Functional Analysis with applications, John Wiley Sons, NewYork, London, Sydney. (1978).

Limit cycles of a class of planar polynomial differential systems

Ame Boulfoul ${ }^{1}$, Nassima Debz 2, Abdelhak Berkane ${ }^{3}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences, 20 August 1955 University, Skikda, Algeria, e-mail: a.boulfoul@univ-skikda.dz
${ }^{2}$ Department of Mathematics, Faculty of Sciences, 20 August 1955 University, Skikda, Algeria, e-mail: debznassima73@gmail.com
${ }^{3}$ Department of Mathematics, Faculty of Sciences, Freres Mentouri University, Constantine, Algeria, e-mail: berkane@usa.com

Abstract

In this paper we study the maximum number of limit cycles that can bifurcate from a linear center, when perturbed inside a class of planar polynomial differential systems of arbitrary degree n. Using averaging theory of first and second order, we estimate the maximum number of limit cycles that this class of systems can exhibit.

Keywords: Limit cycles, Averaging theory, Kukles systems, Lienard systems. 2020 Mathematics Subject Classification: 34C29, 34C25, 47 H 11.

References

[1] Boulfoul A, Makhlouf A. Limit cycles of the generalized polynomial Liénard differential equation. Ann. of Diff. Eqs. 2012; 28:127-131.
[2] Boulfoul A, Makhlouf A. Limit cycles of the generalized polynomial Liénard differential systems. Ann. of app. Math. 2016; 32:221-233.
[3] Boulfoul A, Makhlouf A, Mellahi N. On the limit cycles for a class of generalized Kukles differential systems, Journal of Applied Analysis and Computation. 2019;36: 864-883.
[4] Buicã A, Llibre J. Averaging methods for finding periodic orbits via Brouwer degree. Bull. Sci. Math. 2004; 128: 7-22.

A Derivative-Free algorithm for continuous global optimization

Raouf Ziadi ${ }^{1}$
${ }^{1}$ Laboratory of Fundamental and Numerical Mathematics (LMFN), Department of Mathematics, University Ferhat Abbas Setif, Algeria, ziadi.raouf@gmail.com

In this presentation, we consider the bound constrained global optimization problem of the following form:

$$
\begin{equation*}
f^{*}=\min _{x \in D} f(x) . \tag{1}
\end{equation*}
$$

where $D=\prod_{i=1}^{n}\left[L_{i}, U_{i}\right] \subset \mathbb{R}^{n}$ with L_{i}, U_{i} are real numbers for $i=1, \ldots, n$ and the real objective function $f(x)$ is only continuous. The problem (1) is of interest in many real-world problems involving objective functions which are only continuous and do not possess strong mathematical properties (such as convexity, differentiability, Lipschitz or Hölderian continuity etc.). If a function f is a priori known to be only continuous, then apart from saying that f "remains near $f(x)$ in a neighbourhood of x " which translates into dealing with the modulus of continuity of f, at x nothing tractable can be inferred on the values of f away from x. One way to tackle such enormous uncertainties is to use the following result:

Theorem 1 [3] Let f be a real function defined on a compact set $D \subset \mathbb{R}^{n}$. Then f is continuous if and only if for all $\varepsilon>0$, there exists a constant $C_{\varepsilon}>0$ such that for all $x, x^{\prime} \in D$, we have:

$$
\begin{equation*}
\left|f(x)-f\left(x^{\prime}\right)\right| \leq C_{\varepsilon}\left\|x-x^{\prime}\right\|+\varepsilon \tag{2}
\end{equation*}
$$

A drawback of the above theorem is that given f and ε, there are no specific means to recover exactly the constant C_{ε} for example for black-box functions. Our idea is to work on a sequence $\left\{C_{j}\right\}_{j \in \mathbb{N}}$ of positive constants that controls the growth of C_{ε}. This is done by actual collecting of information while running a Lissajous curve throughout the feasible domain.

The proposed method is based on the reducing transformation technique by running in the feasible domain a single parametrized Lissajous curve, which becomes increasingly denser and progressively fills the feasible domain. By means of a one-dimensional search algorithm, we realize a mixed method which explores the feasible domain. To speed up the mixed exploration algorithm, we
have incorporated a derivative-free local search algorithm to explore promising regions. This method converges in a finite number of iterations to the global minimum. The simulation results based on a set of 180 benchmark functions with diverse properties and different dimensions show the efficiency and the abilities of the proposed algorithm in finding the global optima compared with the existing methods.

Keywords: Global optimization, Local optimization, Reducing transformation method, Lissajous parametrized curve.

2020 Mathematics Subject Classification: 90C26, 90C90.

References

[1] Ziadi, R., Becherif-Madani, A., A covering method for continuous global optimisation. International Journal of Computing Science and Mathematics, 13(4)(2021) 369-390.
[2] Ziadi, R., Bencherif-Madani, A., Ellaia, R., A deterministic method for continuous global optimization using a dense curve. Mathematics and Computers in Simulation, 178 (2020) 62-91.
[3] Ziadi, R., Bencherif-Madani, A., Ellaia, R., Continuous global optimization through the generation of parametric curves", Applied Mathematics and Computation, 282 (2016), 65-83

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

Diophantine approximation by prime numbers of a special form

Tatiana Todorova
${ }^{1}$ Department Algebra, Faculty of Mathematics and Informatics, University of Sofia "St. Kl. Ohridski", Sofia, Bulgaria, tlt@fmi.uni-sofia.bg

We show that whenever $\delta>0, \eta$ is real and constants λ_{i} subject to certain assumptions, there are infinitely many prime triples p_{1}, p_{2}, p_{3} satisfying the inequality $\left|\lambda_{1} p_{1}+\lambda_{2} p_{2}+\lambda_{3} p_{3}+\eta\right|<\left(\max p_{j}\right)^{-1 / 18+\delta}$ and such that, for each $i \in\{1,2,3\}, p_{i}+2$ has at most 7 prime factors. The proof uses Davenport Heilbronn adaption of the circle method together with a vector sieve method.
Keywords: Circle method, almost primes, diophantine inequality. 2020 Mathematics Subject Classification: 11D75, 11N36, 11P32.

References

[1] R. Baker and G. Harman. Diophantine approximation by prime numbers. J. Lond. Math. Soc., 25(2):201-215, 1982.
[2] J. Brüdern and E. Fouvry. Diophantine approximation by prime numbers. J. Reine Angew. Math., 454:59-96, 1994.
[3] J. R. Chen. On the representation of a large even integer as the sum of a prime and the product of at most two primes.
[4] S. I. Dimitrov. Diophantine approximation by special primes. 2018
[5] S. I. Dimitrov and T. Todorova. Diophantine approximation by prime numbers of a special form. Annuaire Univ. Sofia, Fac. Math. Inform., 102:71 90, 2015.
[6] G. Greaves. Sieves in number theory. Springer-Verlag, New York, 2001.
[7] G. Harman. Diophantine approximation by prime numbers. J. Lond. Math. Soc., 44(2):218-226, 1991.
[8] H. Iwaniec. Rosser's sieve. Acta Arith., 36:171-202, 1980.
[9] H. Iwaniec. A new form of the error term in the linear sieve. Acta Arith., 37:307-320, 1980.
[10] H. Iwaniec and E. Kowalski. Analytic Number Theory. Amer. Math. Soc. Colloq. Publ., New York, NY, 2004
[11] A. Karatsuba. Principles of the Analytic Number Theory. Nauka, Moscow, 1983.
[12] K. Matomäki. A bombieri - vinogradov type exponential sum result with applications. Compositio Mathematica, 129(9):2214-2225, 2009.
[13] K. Matomäki. Vinogradovs three primes theorem with almost twin primes. Journal of Number Theory, 153(6):1220-1256, 2017.
[14] K. Matomäki. Diophantine approximation by primes. Glasgow Math. J., 52:87-106, 2010.
[15] R. M. Murty. Problems in Analytic Number Theory. Springer, 2008.
[16] T. Peneva. On the ternary goldbach problem with primes p such that $p+2$ are almostprime. Acta Arith.Hungar., 86:305-318, 2000.
[17] B. I. Segal. On a theorem analogous to waring's theorem. Dokl. Akad. Nauk SSSR (N. S.), 2:47-49, 1933.
[18] Shi San-Ying. On the distribution of αp modulo one for primes p of a special form. Dokl. Akad. Nauk SSSR (N. S.), 49:993-1004, 2012.
[19] W. M. Shmidt. Diophantine Approximation. Springer-Verlag, 1980.
[20] D. I. Tolev T. L. Todorova. On the distribution of αp modulo one for primes p of a special form. Math. Slovaca, 60:771-786, 2010.
[21] D. I. Tolev. Representations of large integers as sums of two primes of special type, pages 485 - 495. Walter de Gruyter, 2000.
[22] R. C. Vaughan. Diophantine approximation by prime numbers i. Proc. Lond. Math.Soc., 28(3):373-384, 1974.
[23] R. C. Vaughan. The Hardy-Littlewood method. Cambridge Univ. Press, 1997.
[24] I. M. Vinogradov. Representation of an odd number as the sum of three primes. Dokl. Akad. Nauk. SSSR, 15:291-294, 1937.
[25] I. M. Vinogradov. The method of trigonometrical sums in the theory of numbers. Trud. Math. Inst. Steklov, 23:1-109, 1947.

Cohen positive strongly p-summing m-homogeneous polynomials from a tensor viewpoint

HAMDI Halima ${ }^{1}$, BELACEL Amar ${ }^{2}$
${ }^{1}$ Laboratory of pure and applied mathematics. University of Amar Telidji. Laghouat. Algeria, e-mail hal.hamdi@lagh-univ.dz
${ }^{2}$ Laboratory of pure and applied mathematics. University of Amar Telidji. Laghouat.
Algeria, e-mail a.belacel@lagh-univ.dz

Abstract

We study the concept of Cohen positive strongly p-summing m-homogeneous polynomials and we present a duality relationship of this class in tensor terms. Keywords: Homogeneous polynomials, Positive p-summing operators, Tensor norm. 2020 Mathematics Subject Classification: 46A20, 46A32, 47B10.

The main result

Definition Let $1<p \leq+\infty$ and $m \in \mathbb{N}$. An m-homogeneous polynomial $P: X \longrightarrow F$ is Cohen positive strongly p-summing, if there is a constant $C>0$, such that for any $x_{1}, \ldots, x_{n} \in$ X and any $y_{1}^{*}, \ldots, y_{n}^{*} \in F^{*}$,

$$
\begin{equation*}
\sum_{i=1}^{n}\left|\left\langle P\left(x_{i}\right), y_{i}^{*}\right\rangle\right| \leq C\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{m p}\right)^{\frac{1}{p}}\left\|\left(y_{i}^{*}\right)_{i=1}^{n}\right\|_{\ell_{p^{*},|w e a k|}}\left(F^{*}\right) . \tag{1}
\end{equation*}
$$

The class of such polynomials is denoted by $\mathcal{P}_{\text {Coh,p}}^{+}\left({ }^{m} X ; F\right)$. It is a Banach space with the norm $d_{p}^{+}($.$) which is the smallest constant C$ such that the inequality (III) holds.
Proposition (Duality) Let $P: X \rightarrow F$ be an m-homogeneous polynomial. The following are equivalent
(i) P is Cohen positive strongly p-summing.
(ii) ϕ_{P} is bounded on $\left(\left(\otimes_{s}^{m} X\right) \otimes F^{*}, \lambda_{p}^{+}\right)$.

Under this circumstances $d_{p}^{+}(P)=\left\|\phi_{P}\right\|$.

References

[1] Achour, D., Belacel, A., Domination and factorization theorems for positive strongly p summing operators. Positivity. 18(2014), $785-804$.
[2] Cohen, J.S., Absolutely p-summing, p-nuclear operators and their conjugates. Math. Ann. 201(1973), 177 - 200.
[3] Diestel, J., Jarchow, H., Tonge, A., Absolutely Summing Operators. Cambridge University Press, Cambridge. (1995).

Analysis of a Electro-Elastic contact problem with wear and unilateral constraint

Laldja Benziane ${ }^{1}$, Nemira Lebri ${ }^{2}$
${ }^{1}$ Laboratory of Applied Mathematics, Department of Mathematics, Faculty of Sciences, University Ferhat Abbas of Setif 1, Algeria, e-mail: la.benziane@yahoo.fr
${ }^{2}$ Laboratory of Applied Mathematics, Department of Mathematics, Faculty of Sciences, University Ferhat Abbas of Setif 1, Algeria, e-mail: nemiralebri@yahoo.com

We study a mathematical problem describing the quasistatic frictional contact with wear between a piezoelectric body and a moving foundation was considered. The evolution of the wear function is described with Archad's law. A nonlinear electro-elastic constitutive law is used to modelled with a normal compliance condition with unilateral constraint and the associated with regularized Coulomb's law of dry friction, which takes into account the wear of the foundation. We drive a variational formulation for the model, in the forme of a coupled system for the diplacement, the electric potential and the wear. An existence and uniqueness result was proved. The proofs were carried out by using arguments of elliptic variational inequalities, differential equations, and Banach fixed point theorem.
Keywords: Electro-Elastic; Friction contact, fixed point.
2020 Mathematics Subject Classification: 74C10, 49J40, 74M10

References

[1] K.T. Andrews, A. Klarbring, M. Shillor, A dynamic contact problem with friction and wear. Int. J. Eng. Sci.1997;35:1291-1309.
[2] R. C. Batra and J.S. Yang, Saint-Venant's principle in linear piezoelectricity, Journal of Elasticity, 38 (1995), no. 2, 209-218.
[3] P. Bisegna, F. Lebon and F. Maceri, The unilateral frictional contact of a piezoelectric body with a rigid support, Contact Mechanics (Praia da Consolacdcao, 2001) (J. A. C. Martins and M. D. P. Monteiro Marques, eds.), Solid Mech. Appl., vol. 103, Kluwer Academic, Dordrecht, 2002, 47-354.
[4] T. Buchukuri and T. Gegelia, Some dynamic problems of the theory of electroelasticity, Memoirs on Differential Equations and Mathematical Physics, 10 (1997), 1-53.
[5] T. Ikeda, Fundamentals of Piezoelectricity, Oxford University Press, Oxford, 1990.
[6] Z. Lerguet, M. Shillor and M. Sofonea, A frictional contact problem for an electroviscoelastic body, Electronic Journal of Differential equations, 170(2007), 1-16.

Comparison of Two Effective Methods on Numerical Solutions of Differential Equations

Özlem Soylu ${ }^{1}$, Onur Karaoğlu ${ }^{2}$
${ }^{1}$ Department of Mathematics, Graduate School of Natural and Applied Sciences, Selçuk University, Konya, Türkiye, ozlem.soyluu@icloud.com
${ }^{2}$ Department of Mathematics, Faculty of Science, Selçuk University, Konya, Türkiye, okaraoglu@yahoo.com

In positive sciences, modeling of processes that change over time often leads us to differential equations. Except for some known special solution procedures an analytical solution of most differential equations cannot be found. For this reason, studies to find approximate solutions of differential equations in different formations have always been interesting. For this purpose, there are many numerical methods in the literature. In this study, the differential transform method $[1,2]$ and the Taylor collocation method [3,4] will be emphasized. Both methods are Taylor series based methods and aim to find the coefficients in the Taylor series expansion of the approximate solution. While the differential transform method transforms the given differential equation into an algebraic equation, the Taylor collocation method transforms the given differential equation into a system of algebraic equations at the ordering points. In obtaining this algebraic equation and algebraic equation system, derivative based transformations of functions and derivatives are used in the differential transform method, while matrix representations of functions and derivatives are used in the Taylor collocation method. With the above mentioned methods using derivative based transformations, faster and easier calculations can be made compared to integral transform methods.

In this study, the comparison of the mentioned two methods on some ordinary differential equations through their offered by on the solutions will be included.
Keywords: Differential transform method, Taylor collocation method, Ordinary differential equations.
2020 Mathematics Subject Classification: 34A25, 65L60, 34B15.

References

[1] J.K. Zhou. Differential Transformation and Its Applications for Electrical Circuits (in Chinese). Huazhong Univ. Press, Wuhan, China, 1986.
[2] V.S. Ertürk and S. Momani. Comparing numerical methods for solving fourth-order boundary value problems. Applied Mathematics and Computation, 188:1963-1968, 2007.
[3] M. Sezer. A method for approximate solution of the second order linear differential equations in terms of taylor polynomials. International Journal of Mathematical Education in Science and Technology, 27(6):821-834, 1996.
[4] A. Karamete and M. Sezer. A taylor collocation method for the solution of linear integrodifferential equations. International Journal of Computer Mathematics, 79(9):987-1000, 2002.

A Theoretical Synthesis of Philosophy of Mathematics and Mathematical Beliefs and Application to Mathematics Education

Fatih Taş ${ }^{1}, P_{1}$ nar $A k y_{1} l_{1} z^{2}$
${ }^{1}$ Mathematics Education, Faculty of Education, Bartin University, Turkey, fatihtas@bartin.edu.tr
${ }^{2}$ Mathematics Education, Faculty of Education, Bartin University, Turkey, pakyildiz@bartin.edu.tr

In the last quarter-century, studies on the philosophy of mathematics and mathematical beliefs have increased. However, researchers have argued that philosophy and mathematics education remain unconnected in classrooms. An answer is important to the following question: How the philosophy of the people and the program and the beliefs of the teachers and the students affect the learning process? Today, there is a need to re-imagine mathematics education and to build it on philosophical fundamentals.

Ernest (1991) defined a teacher's philosophy of mathematics as his/her personal theory of the nature of mathematical knowledge. The term "belief" is often used synonymously with terms such as disposition (e.g., Scheffler, 1965), world view (e.g., Schoenfeld, 1985), perception (e.g., Gopnik \& Melzoff, 1997), philosophy (e.g., Ernest, 1991; Lerman, 1983) and so forth. Since these concepts are not directly observable and because of their overlapping nature, they are confused with each other, and even these concepts are often defined in terms of each other. For example, Ernest (1985) and Lerman (1990) emphasized a teacher's application of the philosophy of mathematics as a basis for his/her beliefs about teaching and learning mathematics. In addition, Ernest (1989a, 1989 b) stated that a teacher's understanding of the nature of mathematics constitutes his or her belief system concerning mathematics as a whole and forms the basis of her philosophy of mathematics.

The system of mathematical beliefs provided a model for characterizing the teacher's personal philosophy of mathematics and its evolution. According to this model, a mathematics teacher can have three main philosophical conceptions: Instrumentalist, Platonist, and Problem-solving (see Ernest, 1989a, 1989b). For example, the Platonist philosophical view claims that mathematical knowledge has "a priori", is immutable and eternally truth. Hence a teacher with this view tries to convey this eternal truth to the students in a better way as a more rigid and finished product in a more or less didactic-receptive way.

It is aimed to express a theoretical synthesis of the philosophy of mathematics and mathematical beliefs, their relations with each other in the present
study. These mathematics-oriented teaching and learning beliefs are part of the teacher's larger system that determines how the philosophy of mathematics is applied (Ernest, 1991). There are many ways in which processes theories, concepts, and results of past enquiry in philosophy can be applied to mathematics education (Ernest, 1998; Skovsmose, 1994). Through our call in this presentation, we hope that more researchers will be stimulated to revisit the integration of philosophy into mathematics education, and to conceptualize what, how, where, and when efforts should be focused to integrate the aspects of philosophy.
Keywords: Philosophy of mathematics, Mathematical beliefs, Mathematics education, Therotical synthesis

1 References

[1] Ernest, P. (1985). The Philosophy of Mathematics and Mathematics Education, International Journal for Mathematical Education in Science and Technology, 16(5), 603-612.
[2] Ernest, P. (1989a). The knowledge, beliefs and attitudes of the mathematics teacher: A model. Journal of Education for Teaching, 15, 13-34.
[3] Ernest, P. (1989b). The impact of beliefs on the teaching of mathematics. In P. Ernest (Ed.), Mathematics teaching: The state of art (pp. 249-254). New York: Falmer.Ernest, P. (1991). The philosophy of mathematics education, London: Routledge.
[4] Ernest, P. (1998). Social constructivism as a philosophy of mathematics. Albany, New York: State University of New York.
[5] Gopnik, A., \& Meltzoff, A. N. (1997). Words, thoughts and theories. Cambridge, Massa chusetts: MIT Press.
[6] Lerman, S. (1983). Problem-solving or knowled ge centered: The influence of philosophy on mathematics teaching. International Journal of Mathematical Education in Science and Technology, 14(1), 59-66.
[7] Lerman, S. (1990). Alternative perspectives of the nature of mathematics and their influence on the teaching of mathematics. British Educational Research Journal, 16(1), 53-61.
[8] Schoenfeld, A.H. (1985). Mathematical problem solving. Orlando (FL): Academic Press.
[9] Scheffler, I. (1965). Conditions of knowledge. Chicago: Scott Foresman and Company.
[10] Skovsmose, 0. (1994). Towards a philosophy of critical mathematics education. Kluwer A

Truncated condition for second order perturbed sweeping process

Imene Mecemma ${ }^{1}$, Sabrina Lounis ${ }^{2}$, Mostapha Fateh Yarou ${ }^{3}$
${ }^{1}$ Department of Mathematics,Faculty of Exact Sciences and Computer Science, Mohammed Seddik Ben Yahia University, Jijel, Algerian, mecemma.imene@yahoo.com
${ }^{2}$ Department of Mathematics, Faculty of Exact Sciences and Computer Science, Mohammed Seddik Ben Yahia University, Jijel, Algerian, lounis_18sabrina@yahoo.fr
${ }^{3}$ Department of Mathematics, Faculty of Exact Sciences and Computer Science,
Mohammed Seddik Ben Yahia University, Jijel, Algerian, mfyarou@yahoo.com

The sweeping process is a particular differential inclusion governed by a normal cone to a moving set. This type of problem plays an important role in elastoplasticity and dynamics. The naming of "sweeping process" is due to the fact that $u(t)$ is swept by $D(t)$. In the present paper, we are mainly interested to study the following new variant of the sweeping process

$$
(\mathcal{S})\left\{\begin{array}{l}
\ddot{u}(t) \in-N_{D(t, u(t), \dot{u}(t))}(\dot{u}(t))-G(t, u(t), \dot{u}(t)), \quad \text { a.e. } \quad t \in[0, T] ; \\
u(0)=u_{0}, \dot{u}(0)=v_{0} \in D\left(0, u_{0}, v_{0}\right),
\end{array}\right.
$$

where $N_{D(t, u(t), \dot{u}(t))}(\dot{u}(t))$ stands for the Clark normal cone to the closed set $D(t, u(t), \dot{u}(t))$ at a point $\dot{u}(t), D$ is an unbounded and uniformly r prox reguler set depending jointly on time, state and velocity, and G is set valued perturbation forces, that is external forces applied on the system. The authors [1] have studied the same problem under the ball-compactness assumption for $D(t, u(t))$, then various extensions have been obtained by many authors. Recently, in the infinite-dimensional space H, we extend the results obtained by [2] by adapting the implicit discretization scheme to the nonconvex case. The standard Lipschitz (or absolutely continuous) assumption is replaced by a truncated one, in order to deal with a large class of unbounded sets. Also, we weaken the assumptions on the unbounded set-valued perturbation by taking only the element of minimum norm satisfying a linear growth condition.
Keywords: Moreau's sweeping process, prox-regular set, truncation.
2020 Mathematics Subject Classification: 34K09, 49J52.

References

[1] C. Castaing, A. G. Ibrahim, and M. F. Yarou. Existence problems in second order evolution inclusions: discretization and variational approach. Taiwanese Journal of Mathematics, 12(6):1433-1475, 2008.
[2] S. Adly and B. K. Le. An existence result for discontinuous second-order nonconvex statedependent sweeping processes. Applied Mathematics and Optimization, 79(2):515-546, 2019.

On Quasi Ideals of Nearness Semigroups

ÖZLEM TEKİN ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Arts and Sciences, Adıyaman University 02040 Adiyaman, Turkey. umduozlem42@gmail.com

In 1956, the concept of quasi ideals for semigroups [1] and rings was firstly defined by Steinfeld. Many researchers studied important properties for quasi ideals. Readers can find several paper about quasi-ideals in $[2,3,4]$.

In 2002, Peters introduced near set theory that is a generalization of rough set theory [5]. In this theory, Peters defined an indiscernibility relation by using the features of the objects to determine the nearness of the objects [6]. Afterwards, he generalized approach theory of the nearness of non-empty sets resembling each other $[7,8]$. In 2012, İnan and Öztürk investigated the concept of nearness groups [9] and other algebraic approaches of near sets. Also, Tekin defined quasi ideals in semirings on weak nearness approximaion spaces [10]. The aim of this paper is to study the notion of quasi-ideals in semigroups on weak nearness approximation spaces and explain some of the concepts and definitions.
Keywords: Weak nearness approximation spaces, nearness semigroups, quasi ideals.
2020 Mathematics Subject Classification: 03E75, 03E99, 16D25.

References

[1] O. Steinfeld. On ideal-quotients and prime ideals. Acta Math. Acad. Sci. Hung., 4:289298, 1953.
[2] O. Steinfeld. Quasi-ideals in rings and semigroups. Disquisitiones Mathematicae Hungaricae. 10. Budapest: Akademiai Kiado. XI, 154 p. DM 27.50 (1978)., 1978.
[3] H. J. Weinert. On quasi-ideals in rings. Acta Math. Hung., 43:85-99, 1984.
[4] K. Iseki. Quasiideals in semirings without zero. Proc. Japan Acad., 34:79-81, 1958.
[5] Z. Pawlak. Rough sets. Int. J. Comput. Inform. Sci., 11:341-356, 1982.
[6] J. F. Peters. Near sets. General theory about nearness of objects. Appl. Math. Sci., Ruse, 1(53-56):2609-2629, 2007.
[7] J. F. Peters. Near sets. Special theory about nearness of objects. Fundam. Inform., 75(1-4):407-433, 2007.
[8] J. F. Peters. Near sets: an introduction. Math. Comput. Sci., 7(1):3-9, 2013.
[9] E. İnan and M. A. Öztürk. Near semigroups on nearness approximation spaces. Ann. Fuzzy Math. Inform., 10(2):287-297, 2015.
[10] Ö. Tekin. Quasi ideals of nearness semirings. Cumhuriyet Sci. J., 42(2):333-338, 2021.

BERGE EQUILIBRIUM IN RANDOM BI-MATRIX GAME

DJEBARA Sabiha ${ }^{1}$, ACHEMINE Farida ${ }^{2}$, ZERDANI Ouiza ${ }^{3}$
${ }^{1}$ Laboratoire de Recherche Oprationnelle et de Mathmatiques de la Dcision, Faculty of sciences, University Mouloud Mammeri Tizi Ouzou, Tizi Ouzou 15000, Algeria, sabiha.djebara@ummto.dz
${ }^{2}$ Laboratoire Mathmatiques Pures et Appliques, Faculty of sciences, University Mouloud Mammeri Tizi Ouzou, Tizi Ouzou 15000, Algeria, farida.achemine@ummto.dz
${ }^{3}$ Laboratoire de Recherche Oprationnelle et de Mathmatiques de la Dcision, Faculty of sciences, University Mouloud Mammeri Tizi Ouzou, Tizi Ouzou 15000, Algeria, ouizabouarab@gmail.com

We consider a bi-matrix game where each player has a stochastic matrix payoff. First, We formulate the game with chance-constraints. Then, in the case where the entries of the payoff matrices are normal distributions, we prove the existence of Berge equilibrium. Finally, we show that this equilibrium can be obtained by solving an equivalent quadratic problem.

Keywords: Bi-matrix game, noncooperative game, stochastic matrices,Berge equilibrium.
2020 Mathematics Subject Classification: 91A05, 91A10, 15B51.

References

[1] Abalo K.Y. and Kostreva M.M. Berge equilibrium: Some recent results from fixed-point theorems. Appl. Math. Comput., 169:624-638, 2005.
[2] Blau and R. A. Random-payoff two person zero-sum games. Operations Research, 22(2):1243-1251, 1974.
[3] Rentsen Enkhbat and Batbileg Sukhee. Optimization approach to berge equilibrium for bimatrix game. Optimization Letters, 2021.
[4] Song T. Systems and Management Science by Extremal Methods, chapter On random payoff matrix games. Springer Science + Business Media, LLC, 1992.
[5] Vikas Vikram S., Oualid J., and A. Lisser. A complementarity problem formulation for chance-constraine games. Proceedings of the National Academy of Sciences, pages 58-67, 2016.

The Dirichlet Problem for the Polyanalytic Equations in a Ring Domain

İlker Gençtürk ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Arts and Sciences, Kırıkkale University, Kırıkkale,
Turkey, ilkergencturk@gmail.com

The theory of boundary value problems for complex partial differential equations has important applications in some physical problems. As an example of boundary condition, explicit solutions to Dirichlet problem for some type of complex PDEs are given for different particular domains, such as the unit disc, ring, see e.g. [1, 2]. Furthermore, basic or mixed boundary value problems for higher order complex partial differential equations have been studied in $[3,4,5,6,7]$.

In this work, we investigate solution of Dirichlet boundary value problem for polyanalytic functions in a concentric ring domain $R=\{z \in \mathbb{C}: 0<r<|z|<1\}$ in a explicit form. We used similar techniques as in $[1,2,8]$.

Keywords: Dirichlet problem, polyanalytic equation, ring domain. 2020 Mathematics Subject Classification: 30E20, 30E25, 32A55.

References

[1] H. Begehr. Boundary value problems in complex analysis i. Bol. Asoc. Math. Venezolana, 12(1):65-85, 2005.
[2] T. Vaitekhovich. Boundary value problems for complex partial differential equations in a ring domain. PhD thesis, FU Berlin, 2008.
[3] H. Begehr and A. Kumar. Boundary value problems for the inhomogeneous polyanalytic equation i. Analysis-International Mathematical Journal of Analysis and its Application, 25(1):55-72, 2005.
[4] H. Begehr and D. Schmersau. The schwarz problem for polyanalytic functions. Zeitschrift fur Analysis und ihre Anwendungen, 24(2):341-351, 2005.
[5] H. Begehr and T. Vaitekhovich. Iterated dirichlet problem for the higher order poisson equation. Le Matematiche, 63(1):139-154, 2008.
[6] I. Gencturk and K. Koca. Dirichlet boundary value problem for a nth order complex partial differential equation. General Mathematics, 23(1-2):39-48, 2015.
[7] A. Kumar and R. Prakash. Dirichlet problem for inhomogeneous polyharmonic equation. Complex Variables and Elliptic Equations, 53(7):643-651, 2008.
[8] H. Begehr. Boundary value problems in complex analysis ii. Bol. Asoc. Math. Venezolana, 12(2):217-250, 2005.

Resolution a problem of quantum mechanics in fractional dimensional space

Hadjer Merad ${ }^{1}$ M'hamed Hadj Moussa ${ }^{2}$
${ }^{1}$ Laboratory of Mathematics, Informatics and Systems (LAMIS) Larbi Tebessi University, Tebessa, Algeria. 12000, Tebessa, Algeria. e-mail: meradhad@gmail.com
${ }^{2}$ Department of Physics, Faculty of Sciences, Saad Dahlab-Blida 1 University, Blida, Algeria. 09000, Blida, Algeria.

The purpose of this work is to obtain an exact solution of an equation describes the spin-0 particles with relativistic energy subjected to the action of a scalar potential and a vector potential in the context of the fractionaldimensional space, where the momentum and position operators fulfils the Rdeformed Heisenberg algebras. Therefore, several problems has been solved, and in all cases, the expressions of the eigenfunctions are determined and expressed in terms of the special functions, and the corresponding eigenvalues are exactly obtained and established depending on the deformation parameters D and σ, which explains the confinement in law dimension.

Keywords: Fractional-dimensional space, special functions, R-deformed Heisenberg algebras.
2020 Mathematics Subject Classification: 00A69, 34A08, 46N50..

References

1. R. A. El Nabulsi, Few-Body Syst. 61, 1 (2020).
2. L. Zhong, H. Chen, Z. W. Long, C. Y. Long and H. Hassanabadi, Int. J. Mod. Phys. A 36, 2150129 (2021).
3. M. Zubair, M. J. Mughal and Q. A. Naqvi, Electromagnetic Fields and Waves in Fractional Dimensional Space (Springer Science \& Business Media, 2012).

Locally I- connectedness

Selahattin Kılınç ${ }^{1}$,
${ }^{1}$ Department of Mathematics, Faculty of Science and Literature, Çukurova University, Adana, Turkey, selahattinkilinc@hotmail.com

In this paper, we introduce locally connected space with respect to an ideal and examine some basic properties. Let (X, τ) is a topological space and I is an ideal on X. A space X is said to be locally $I-$ connected at x if for every open set V containing x, there exists a subset U of X containing x such that $U-V \in I$. If all points of space X are locally I-connected, this space is called a locally I-connected space. We have revealed the main features of this weaker form of locally connectedness. Next It has been shown that it is preserved under continuous functions depending on what conditions. Then we examine the I-connected property on the new topology introduced by via ideal. In addition, it was revealed under what conditions locally I-connectedness and locally connectedness coincide with one another and under what conditions one differs from another.
Keywords: Locally I-connectedness, Locally connecdeness, Ideal topological space 2020 Mathematics Subject Classification: 54A05, 54D05, 54B05.

References

[1] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
[2] R. Vaidyanathaswamy, The Localisation Theory in Set Topology, Proceedings of the Academic of Sciences, (20): 51-61, 1945.
[3] D. Jankovic, T. R. Hamlett, Compatible extensions of ideals, Bollettino Unione Matematica Italiana, (7):453-465, 1992.
[4] S. Modak, T. Noiri, Connectedness of ideal topological spaces, Filomat, (29): 661-665, 2015
[5] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, American Mathematical Monthly, 97(4):295-310, 1990.
[6] R. L. Newcomb, Topologies which are compact modulo an ideal, Ph.D Dissertation, University of California, Santa Barbara, 1967.
[7] E. Hayashi, Topologies defined by local properties, Mathematische Annalen, (15):205-215, 1964. UNVERSTTY
pUBLICATIONS

A Finite Difference Scheme for Singularly Perturbed Neutral Type Differential Equations

Yilmaz Ekinci ${ }^{1}$, Erkan Cimen ${ }^{2}$, Musa Cakir ${ }^{3}$
${ }^{1}$ Department of Mathematics, Institute of Pure and Applied Sciences, Van Yuzuncu Yil University, 65080, Van, Turkey, ylmz_eknc@hotmail.com
${ }^{2}$ Department of Mathematics, Faculty of Education, Van Yuzuncu Yil University, 65080, Van, Turkey, cimenerkan@hotmail.com
${ }^{3}$ Department of Mathematics, Faculty of Science, Van Yuzuncu Yil University, 65080, Van, Turkey, cakirmusa@hotmail.com

Neutral type delay differential equations arise widely in scientific fields such as biology, ecology, medicine, physics, engineering, etc $[1,2]$. Besides, singularly perturbed differential equations are ubiquitous in mathematical problems in the sciences and engineering. Examples include the Navier-Stokes equations of fluid flow at high Reynolds number, the equations governing flow in a porous medium, fluid mechanics, elasticity, quantum mechanics, plasticity, oceanography, meteorology, and mathematical models of liquid materials and of chemical reactions [3].

This study deals with the singularly perturbed initial value problem for a first-order neutral type delay differential equations. For the numerical solution of this problem, a finite difference scheme given on a uniform mesh is presented. The scheme is constructed by the method based on using appropriate quadrature rules with the weight and remainder terms in integral form. Uniform convergence is proved in the discrete maximum norm with respect to perturbation parameter. We formulate the iterative algorithm for solving the discrete problem and present numerical results which validate the theoretical analysis computationally.
Keywords: Singular perturbation, neutral delay differential equation, uniform convergence.
2020 Mathematics Subject Classification: 34K26, 65L05, 65L11.

References

[1] J. K. Hale and S. M. V. Lunel. Introduction to Functional Differential Equations. Springer, New York, 1993.
[2] E. Cimen and Y. Ekinci. Numerical method for a neutral delay differential problem. International Journal of Mathematics and Computer Science, 162(3):1023-1034, 2005.
[3] H. G. Roos, M. Stynes, and L. Tobiska. Robust Numerical Methods for Singularly Perturbed Differential Equations. Springer, Berlin, 2008.

A Numerical Approach for System of Ordinary Differential Equations

Şevket Üncü ${ }^{1}$, Erkan Cimen ${ }^{2}$
${ }^{1}$ Department of Mathematics, Institute of Pure and Applied Sciences, Van Yuzuncu Yil University, 65080 Van, Turkey, uncusevket@gmail.com
${ }^{2}$ Department of Mathematics, Faculty of Education, Van Yuzuncu Yil University, 65080 Van, Turkey, cimenerkan@hotmail.com

The systems of differential equations appear in many scientific processes such as physics, engineering, chemistry, etc. Especially the system of differential equations arise in modelling of these areas: electrical circuits, population dynamics, feedback control systems [1]. In this study, we deal with a class of the initial value problem for the system of differential equations. Even if there are many analytical methods for systems of differential equations, the exact solution cannot be obtained always. Therefore, the numerical methods gain more importance at this juncture. In recent years, studies on the solution of differential equation systems are quite remarkable. For example, differential transformation method, variational iteration methods, finite difference method were examined ($[2,3,4]$ and reference therein). We construct a new difference scheme by the method of integral identities using interpolating quadrature rules with remainder terms in integral form. We prove that the method is convergent in the discrete maximum norm. We present an example to illustrate the theoretical results obtained. The computational results for presented method and Euler method are displayed in tables. By comparing these results, we show that the presented method is more efficient than the Euler method.
Keywords: System of differential equations, finite difference method, error estimates.
2020 Mathematics Subject Classification: 34A30, 65L05, 65L12.

References

[1] W. A. Adkins and M. G. Davidson. Ordinary Differential Equations. Springer, New York, 2012.
[2] G. M. Amiraliyev. The convergence of a finite difference method on layer-adapted mesh for a singularly perturbed system. Appl. Math. Comput., 162(3):1023-1034, 2005.
[3] J. Biazar and H. Ghazvini. He's variational iteration method for solving linear and nonlinear systems of ordinary differential equations. Appl. Math. Comput., 191(1):287-297, 2007.
[4] M. Higazy and S. Aggarwal. Sawi transformation for system of ordinary differential equations with application. Ain Shams Eng. J., 12(3):3173-3182, 2021.

Solving Abel's Integral Equation by Kashuri Fundo Transform

Fatma Aybike Çuha ${ }^{1}$, Haldun Alpaslan Peker ${ }^{2}$
${ }^{1}$ Graduate School of Natural and Applied Sciences, Selcuk University, Konya, Turkey, fatmaaybikecuha@gmail.com (ORCID: 0000-0002-7227-2086)
${ }^{2}$ Department of Mathematics, Faculty of Science, Selcuk University, Konya, Turkey, pekera@gmail.com (ORCID: 0000-0002-1654-6425)

Integral equations can be defined as equations in which unknown function to be determined appears under the integral sign [1, 2]. These equations have been used in many problems occurring in different fields due to the connection they establish with differential equations [3, 4]. Abel's integral equation is an important singular integral equation used in microscopy, seismology, radio astronomy, satellite photometry of airglows, electron emission, atomic scattering, radar ranging, optical fiber evaluation and most commonly flame and plasma diagnostics and X-ray radiography [5]. Integral transforms are widely used mathematical techniques for solving advanced problems of applied sciences. One of these transforms is the Kashuri Fundo transform [6]. This transform was derived by Kashuri and Fundo to facilitate the solution processes of ordinary and partial differential equations. In some works, it has been seen that it provides great convenience in finding the unknown function in integral equations. In this work, our aim is to solve Abel's integral equation by Kashuri Fundo transform and some applications are made to explain the solution procedure of Abel's integral equation by Kashuri Fundo transform.
Keywords: Abel's integral equation, Kashuri Fundo transform, Convolution theorem.
2020 Mathematics Subject Classification: 45E10, 44A15, 44A35.
Acknowledgement: This study is a part of the M.Sc. Thesis of the first author.

References

[1] Matiur Rahman. Integral equation and their applications. WIT Press, New York, NY, 2007.
[2] Michio Masujima. Applied mathematical methods in theoretical physics. Wiley-VCH, Weinheim, 2009.
[3] Abdul-Majid Wazwaz. Linear and nonlinear integral equations: methods and applications, pages 237-242. Springer, United States, US, 2011.
[4] Abdul-Majid Wazwaz. A first course in integral equations. World Scientific Publishing, New York, NY, 2015.
[5] V. K. Singh, R. K. Pandey, and O. P. Singh. New stable numerical solutions of singular integral equations of Abel type by using normalized Bernstein polynomials. Applied Mathematical Sciences, 3(5):241-255, 2009.
[6] A. Kashuri and A. Fundo. A new integral transform. Advances in Theoretical and Applied Mathematics, 8(1):27-43, 2013.

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

Existence and uniqueness of positive periodic solutions for a kind of first order neutral functional differential equations with variable delays

Lynda Mezghiche ${ }^{1}$, Rabah Khemis ${ }^{2}$, Ahlème Bouakkaz ${ }^{3}$
${ }^{1}$ Mathematics, Sciences, University of 20 August 1955, Skikda, Algeria, linomezg3@gmail.com
${ }^{2}$ Mathematics, Sciences, University of 20 August 1955, Skikda, Algeria, kbra28@yahoo.fr
${ }^{3}$ Mathematics, Sciences, University of 20 August 1955, Skikda, Algeria, ahlemkholode@yahoo.com

In this work, we present some sufficient criteria for the existence and uniqueness of positive periodic solutions for a class of neutral differential equations inspired by some biological models where these equations involve two types of delays, the first one is a time varying delay and the other depends upon the time and the state variables, leading in turn to the appearance of the second iterate of the state in the production term. The technique used here is based on Banach and Krasnoselskii's fixed point theorems with the Green's functions method. Our results extend and improve previous ones established in the literature.

Keywords: Periodic solution, fixed point theorem, population dynamics. 2020 Mathematics Subject Classification: 35B10, 47H10, 92D25.

References

[1] A. Bouakkaz. Positive periodic solutions for a class of first-order iterative differential equations with an application to a hematopoiesis model. Carpathian J. Math, 38(2):347355, 2022.
[2] A. Bouakkaz R. Khemis. Positive periodic solutions for a class of second-order differential equations with state-dependent delays. Turk J Math, 44:1412-1426, 2020.
[3] A. Bouakkaz R. Khemis. Positive periodic solutions for revisited nicholson's blowflies equation with iterative harvesting term. J. Math. Anal. Appl, 494:124663, 2021.
[4] T. Candan. Existence of positive periodic solutions of first order neutral differential equations with variable coefficients. Appl. Math. Lett, 52:142-148, 2016.
[5] S. Chouaf A. Bouakkaz, R. Khemis. On bounded solutions of a second-order iterative boundary value problem. Turkish J. Math, 46:453-464, 2022.

Under Truncated Random Data, Nonparametric Relative Error Estimation Via Functional Regressor Using The k Nearest Neighbors Smoothing

Nadjet Bellatrach ${ }^{1}$, Wahiba bouabsa ${ }^{2}$
${ }^{1}$ Department of Mathematics, Kasdi Merbah University of ouargla ,Ouargla 30000, Algeria ,bellatrachnadjet@gmail.com
${ }^{2}$ Laboratory of Statistics stochastic processes,Sidi Bel Abbès university BP 89, Sidi Bel Abbès 22000, Algeria, bouabsa-w@yahoo.fr

In this work, the $k \mathrm{NN}$ method is used to examine the relationship between a functional random covariate and a scalar answer because of the left truncation by a different random variable. Specifically, we must use mean squared relative error to generate a nonparametric $k \mathrm{NN}$ regression operator of these functional truncated data as a loss function. In the number of neighbors, we define an estimator and evaluate the uniform consistency performance with the convergence rate. To demonstrate the practicality of our estimate procedure and to highlight its superiority to traditional kernel estimation, a simulation analysis was performed on finitesized samples.
Keywords: Functional data analysis; small ball probability; k NN method; local linear method (LLM) consistency; spacial data; almost complete convergence. 2020 Mathematics Subject Classification: First, Second, Third.

References

[1] Almanjahie, I., Aissiri, K., Laksaci, A. and Chiker Elmezouar, Z. (2020). The k nearest neighbors smoothing of the relative-error regression with functional regressor, Communications in Statistics - Theory and Methods, Vol. 356 , No. 10, pp. 1-14.
[2] M. Attouch, W. Bouabsa, and Z. Chiker el mozoaur, The k-nearest neighbors estimation of the conditional mode for functional data under dependency, International Journal of Statistics \& Economics., 19-1(2018), 48-60.
[3] M. Attouch, W. Bouabsa, The k-nearest neighbors estimation of the conditional mode for functional data. Rev. Roumaine Math. Pures Appl., 58, 4 (2013), 393-415. bibitemBouabsa2021 Bouabsa, W. (2021). Nonparametric relative error estimation via functional regressor by the k Nearest Neighbors smoothing under truncation random data. Applications and Applied Mathematics: An International Journal (AAM), Vol. 16, Iss. 1, 6. pp. 97-116.
[4] Burba, F., Ferraty, F. and Vieu, P. (2009). k-nearest neighbour method in functional nonparametric regression, J. Nonparametr. Stat, Vol. 21, No. 4, pp. 453-469.
[5] Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis. Theory and Practice, New York: Springer-Verlag
[6] Kara, Z., Laksaci, A. and Vieu, P. (2017). Data-driven kNN estimation in nonparametric functional data analysis, Journal of Multivariate Analysis, Vol. 153, No. 85, pp. 176-188. Khardani, S. and Slaoui, Y. (2019). Nonparametric relative regression under random censorship model, Statistics \& Probability Letters, Vol. 151, No. 55, pp. 116-22.

An existence result for a class of nonconvex second order differential inclusions

N. Fetouci ${ }^{1}$, M. F. Yarou ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Exact sciences and informatics, University of Jijel, Jijel, Algeria, norafetou2005@yahoo.fr
${ }^{2}$ Department of Mathematics, Faculty of Exact sciences and informatics, University of Jijel, Jijel, Algeria, mfyarou@yahoo.com

We prove the existence of absolutely continuous solutions to the differential inclusion

$$
\begin{equation*}
\ddot{x}(t) \in F(x(t), \dot{x}(t))+h(t, x(t), \dot{x}(t)), x(0)=x_{0}, \dot{x}(0)=y_{0} \tag{1}
\end{equation*}
$$

where F is an upper semi-continuous set-valued function with compact values such that $F(x, y) \subset \partial f(y)$ on $[0, T]$, where f is a primal lower nice function, and h a single valued Carathéodory perturbation.
Existence results for second order differential inclusions were obtained by many authors, see for instance $[1,4,5,6]$. The case when F is an upper semicontinuous, compact valued multifunction, such that $F(x, y) \subset \partial f(y)$, for some convex proper lower semi-continuous function f, was considered in [3]. We aim at showing that existence of solution of (1) holds in the context of pln lower semi-continuous functions f, which is an extension of the result obtained by authors in [2] for the first order problem.
Keywords: differential inclusions, subdifferentials, primal lower nice functions. 2020 Mathematics Subject Classification: 49A52, 49J53, 34A60.

References

[1] C. Castaing, Quelques problemes d'evolution du second ordre, Sem. d'Anal. Convexe, Montpellier, 5 (1988).
[2] N. Fetouci and M. F. Yarou, Existence results for differential inclusions with primal lower nice functions, Ejde, Vo 2016, N48,(2016), pp. 1-9.
[3] V. Lupulescu, Existence of solutions to a class of second order differential inclusions, Technial report, CM 01/I-11, Department of Mathematics of Aveiro University, (2001).
[4] V.Lupulescu, Existence Of Solutions For Nonconvex Second Order Differential Inclusions, Applied Mathematics E-Notes, 3(2003), 115-123.
[5] M.D.P. Monteiro-Marques, Differential Inclusions in NonSmooth Mechani- cal Problem, Shoks and Dry Friction, Birkauser, 1995.
[6] R. Morchadi and S. Sajid, Nonconvex second-order differential inclusions, Bulletin of the Polish Academy of Sciences Mathematics, 47(3) (1999).

Differential equations of divergence form by Topological Degree in Musielak-Orlicz-Sobolev Spaces

$\underline{\text { Mustapha AIT HAMMOU }}{ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah university, Fez, Morocco, mustapha.aithammou@usmba.ac.ma

By using the Berkovits degree theory, we prove the existence of at least one solution for the differential equation of divergence form

$$
-\operatorname{div} a_{1}(x, \nabla u)+a_{0}(x, u)=f(x, u)
$$

with homogeneous Neumann boundary condition in Musielak-Orlicz-Sobolev spaces.
Keywords: Nonlinear elliptic equation, Weak solutions, Musielak-Orlicz-Sobolev space, Topological degree.
2020 Mathematics Subject Classification: 35J66, 47H11, 47J05, 35D30.

References

[1] M. Al-Hawmi, A. Benkirane, H. Hjiaj, and A. Touzani. Existence and uniqueness of entropy solution for some nonlinear elliptic unilateral problems in musielak-orlicz-sobolev spaces. Annals of the Univ. of Craiova Math. and Computer Sc., 44(1):1-20, 2017.
[2] J. Berkovits. Extension of the leray-schauder degree for abstract hammerstein type mappings. J. Differential Equations, 234:289-310, 2007.
[3] J. Berkovits and V. Mustonen. On topological degree for mappings of monotone type. Nonlinear Anal. TMA, 10:1373-1383, 1986.
[4] G. Dong and X. Fang. Differential equations of divergence form in separable musielak-orlicz-sobolev spaces. Bound. Value Probl., 106:1-19, 2016.
[5] X. Fan. Differential equations of divergence form in musielak-sobolev spaces and a subsupersolution method. J. Math. Anal. Appl., 386:593-604, 2012.
[6] X. L. Fan and C. X. Guan. Uniform convexity of musielak-orlicz-sobolev spaces and applications. Nonlinear Anal., 73:163-175, 2010.
[7] P. Gwiazda, P. Minakowski, and A. Wróblewska-Kamińska. Elliptic problems in generalized orlicz-musielak spaces. Cent. Eur. J. Math., 10(6):2019-2032, 2012.
[8] P. Gwiazda, A. Świerczewska-Gwiazda, and A. Wróblewska. Monotonicity methods in generalized orlicz spaces for a class of non-newtonian fluids. Math. Meth. in Appl.Sci. (M2AS), 33:125-137, 2010.
[9] H. Hudzik. On generalized orlicz-sobolev space. Funct. Approx. Comment. Math., 4:37-51, 1976.

Immigration and Qualitative Behavior of a Two-Dimensional Discrete-Time Model

Seval IŞIK 1, Figen KANGALGİL ${ }^{2}$, Feda GÜMÜŞBOĞA ${ }^{3}$
${ }^{1}$ Department of Mathematics and Science Education, Faculty of Education, Sivas Cumhuriyet University, 58140 Sivas, Turkey, skaracan@cumhuriyet.edu.tr
${ }^{2}$ Bergama Vocational High School, Dokuz Eylul University, 35700, Izmir, Turkey, figen.kangalgil@deu.edu.tr
${ }^{3}$ Department of Mathematics, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey, gumusboga_f@ibu.edu.tr

Over the past few centuries, the dynamic behavior of the predator-prey model has been one of the most interesting topics in biological models. Due to the importance of the Lotka-Volterra model, its dynamical properties have been studied over the years. So, in this study, we consider a discrete-time Lotka-Volterra predator-prey model with linear functional response. A constant immigration for prey population is involved to the model. Thus, this twodimensional discrete-time model has been more realistic. Initially, we deal with the existence conditions for fixed point of considered the model and its stability criterion. Then, by using bifurcation theory, we present bifurcation analysis for the considered model. Finally, we have performed numerical simulations to confirm the accuracy of the theoretical findings by using Matlab software one of the most popular computer algebra system programs.
Keywords: Stability, bifurcation, immigration.
2020 Mathematics Subject Classification: 37G35, 39A30, 39A33.

References

[1] AJ.Lotka, Elements of mathematical biology , Williams \& Wilkins, Baltimore, 1925.
[2] V. Volterra, Variazioni e fluttuazioni del numero di' individui in specie animali conviventi, Mem. Acad. Lincei 6 (2), (1926), 31-113.
[3] T. Tahara, M. Gavina, T. Kawano, J. Tubay, JF. Rabajante, H. Ito, S. Morito, G. Ichinose, T. Okabe, T. Togashi, K. Tainaka, A. Shimizu, T. Nagatani, J. Yoshimura, Asymptotic stability of a modified Lotka-Volterra Model with small immigrations, Scientific Reports, 8, (2018), 7029.
[4] L. Stone, D. Hart, Effects of immigration on dynamics of simple population models, Theoretical Population Biology 55, (1999), 227-234.
[5] MC Callum, E ects of immigration on chaotic population dynamics, Journal of Theoretical Biology, 154, (1992), 277-284.

Existence, uniqueness and stability results for a neutral Mackey-Glass type delay differential equation with an iterative production term

Marwa Khemis ${ }^{1}$, Ahlème Bouakkaz ${ }^{2}$
${ }^{1}$ Laboratory of Applied Mathematics and History and Didactics of Mathematics (LAMAHIS), University of 20 August 1955, Skikda, Algeria, khemismarwa08@gmail.com
${ }^{2}$ Laboratory of Applied Mathematics and History and Didactics of Mathematics (LAMAHIS), University of 20 August 1955, Skikda, Algeria, ahlemkholode@yahoo.com

This work deals with a neutral hematopoiesis model with an iterative production term that describes the blood cells production in the bone marrow. Some sufficient conditions are obtained by employing the Krasnoselskii's and Banach fixed point theorems combined with the Green's functions method in order to establish the existence, uniqueness and continuous dependence on parameters of positive periodic solutions. Our theoretical outcomes enrich some existing ones in recent literature.
Keywords: Fixed point theorem, Green's function method, iterative equation. 2020 Mathematics Subject Classification: $47 \mathrm{H} 10,65 \mathrm{M} 80,39 \mathrm{~B} 12$.

References

[1] A. Bouakkaz. Positive periodic solutions for a class of first-order iterative differential equations with an application to a hematopoiesis model. Carpathian Journal of Mathematics, 38(2):347-355, 2022.
[2] A. Bouakkaz and R. Khemis. Positive periodic solutions for a class of second-order differential equations with state-dependent delays. Turkish Journal of Mathematics, 44:14121426, 2020.
[3] A. Bouakkaz and R. Khemis. Positive periodic solutions for revisited nicholson's blowflies equation with iterative harvesting term. Journal of Mathematical Analysis and Applications, 494:124663, 2021.
[4] S. Chouaf, A. Bouakkaz, and R. Khemis. On bounded solutions of a second-order iterative boundary value problem. Turkish Journal of Mathematics, 46(SI-1):453-464, 2022.
[5] M.C. Mackey and L. Glass. Oscillation and chaos in physiological control systems. Science, 197(4300):287-289, 1977.
[6] H.Y. Zhao and M. Fekan. Periodic solutions for a class of differential equations with delays depending on state. Mathematical Communications, 23:29-42, 2018.

A numerical approach for a class of singularly perturbed differential-difference equation

Erkan Cimen ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Education, Van Yuzuncu Yil University, 65080, Van, Turkey, cimenerkan@hotmail.com

In this paper, we examine the singularly perturbed boundary value problem (SPBVP) for a nonlinear second-order differential-difference equation with mixed type delay. These problems appear in science and engineering fields such as the study of human pupil light reflex, first-exit problems in neurobiology, models of physiological processes and diseases, optimal control theory, models of climate systems, optically bistable devices and signal transmission, quantum photonic systems ($[1,2]$ and reference therein).

On the other hand, for small values of perturbation parameter ε, standard numerical methods for solving SPBVPs are unstable and do not give accurate results. Therefore, it is important to develop suitable numerical methods for solving these problems, whose accuracy does not depend on the parameter value ε, i.e., methods that are convergent ε-uniformly [3].

Firstly, we present some important properties of the exact solution of the problem. Next, in order to the numerical solution of this problem, we use a fitted difference scheme on a piecewise uniform mesh of Shishkin type which is accomplished by the method of integral identities with the use of linear basis functions and interpolating quadrature rules with weight and remainder term in integral form. It has shown that it gives almost first-order uniform convergence in the discrete maximum norm, independently of the perturbation parameter. Finally, we present the numerical experiments that their results support of the theory.
Keywords: Singular perturbation, differential-difference equation, uniform convergence.
2020 Mathematics Subject Classification: 34K26, 65L10, 65L12.

References

[1] C. G. Lange and R. M. Miura. Singular perturbation analysis of boundary value problems for differential-difference equations. SIAM J. Appl. Math., 42(3):502-531, 1982.
[2] E. Cimen. Uniformly convergent numerical method for a singularly perturbed differential difference equation with mixed type. Bull. Belg. Math. Soc. Simon Stevin, 27(5):755-774, 2020.
[3] J. J. H. Miller, E. O'Riordan, and G. I. Shishkin. Fitted Numerical Methods for Singular Perturbation Problems. Rev. Edt. World Scientific, Singapore, 2012.

Solving One-Dimensional Bratu's Problem via Kashuri Fundo Decomposition Method

Haldun Alpaslan Peker ${ }^{1}$, Fatma Aybike Çuha ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Selcuk University, Konya, Turkey, pekera@gmail.com (ORCID: 0000-0002-1654-6425)
${ }^{2}$ Graduate School of Natural and Applied Sciences, Selcuk University, Konya, Turkey, fatmaaybikecuha@gmail.com (ORCID: 0000-0002-7227-2086)

Nonlinear differential equations are of fundamental importance in science and engineering. The nonlinear Bratu's boundary value problem arises in a large variety of application areas such as solid fuel ignition model of thermal combustion, radiative heat transfer, thermal reaction, electrospinning process for the manufacturing of nanofibers, the Chandrasekhar model of the expansion of the universe, chemical reactor theory and nanotechnology $[1,2,3]$. Due to its simplicity, the Bratu's equation is used as a benchmarking tool for various numerical methods such as finite difference method, finite element approach, weighted residual method, variational iteration method, differential transformation method, homotopy analysis. Some nonlinear equations are difficult to solve analytically. For this reason, new methods are being researched and new studies are carried out in order to find better and newer numerical solutions to nonlinear equations. Various numerical techniques such as one-dimensional differential transformation method, finite difference method, finite element approximation, weighted residual method, shooting method, Laplace Adomian decomposition method have been applied to the Bratu equation. In this study, our aim is to solve nonlinear Bratu's problem via Kashuri Fundo decomposition method [4, 5] which is a combined form of the Kashuri Fundo transform method [6] and the Adomian decomposition method [7, 8].
Keywords: Bratu's boundary value problem, Kashuri Fundo transform, Kashuri Fundo decomposition method.
2020 Mathematics Subject Classification: 34B15, 44A15, 65R10.
Acknowledgement: This study is a part of the M.Sc. Thesis of the second author.

References

[1] R. Jalilian. Non-polynomial spline method for solving Bratu's problem. Computer Physics Communications, 181(11):1868-1872, 2010.
[2] G. Bratu. Sur les equation integrals non-lineaires. Bulletin de la Société Mathématique de France, 42:113-142, 1914.
[3] J. Jacobsen and K. Schmitt. The Liouville-Bratu-Gelfand problem for radial operators. Journal of Differential Equations, 184:283-298, 2002.
[4] Ira Sumiati, Sukono, and Abdul T. Bon, editors. Proceedings of the 2nd African International Conference on Industrial Engineering and Operations Management, Harare, Zimbabwe, Michigan, USA, 2020. IEOM Society International.
[5] B. Subartini, I. Sumiati, Sukono, Riaman, and I. M. Sulaiman. Combined Adomian decomposition method with integral transforms. Mathematics and Statistics, 9(6):976983, 2021.
[6] A. Kashuri and A. Fundo. A new integral transform. Advances in Theoretical and Applied Mathematics, 8(1):27-43, 2013.
[7] George Adomian. Stochastic systems analysis, pages 1-17. Academic Press, London, UK, 1980.
[8] G. Adomian. A review of the decomposition method in applied mathematics. Journal of Mathematical Analysis and Applications, 135(2):501-544, 1988.

Construction of novel analytical solutions of two space-time fractional models with the extended $\left(\frac{G^{\prime}}{G^{2}}\right)$-expansion technique
Gizel Bakıcıerler ${ }^{1}$, Emine Mısırlı ${ }^{1}$
Department of Mathematics, Faculty of Science, Ege University, Izmir, Turkey, gizelbakicierler@gmail.com, emine.misirli@ege.edu.tr

The extended $\left(\frac{G^{\prime}}{G^{2}}\right)$-expansion technique is utilized in this research to provide novel analytical solutions to two nonlinear space-time fractional models in the RLW-class. The fractional derivatives are formed in the conformable sense. The suggested technique generates trigonometric, hyperbolic, and rational wave solutions based on the Riccati differential equation. Mathematica software is used to solve the system of algebraic equations, create graphs, and check the verification of analytical solutions. According to the results, this methodology is a convenient and accurate mathematical tool for solving fractional-order nonlinear equations.

Keywords: The extended $\left(\frac{G^{\prime}}{G^{2}}\right)$-expansion method, analytical solution, the fractional differential equations.
2020 Mathematics Subject Classification: 35C07, 35R11, 35Q53.

References

[1] B. Ross. Fractional calculus and its applications. Springer, Berlin, 1974.
[2] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh. A new definition of fractional derivative. J. Comput. Appl. Math., 264:65-70, 2014.
[3] T. Abdeljawad. On conformable fractional calculus. J. Comput. Appl. Math., 279:57-66, 2015.
[4] G. Akram, S. Arshed, and Z. Imran. Soliton solutions for fractional DNA Peyrard-Bishop equation via the extended $\left(G^{\prime} / G^{2}\right)$-expansion method. Phys. Scr., 96(9):094009, 2021.
[5] K. R. Raslan, K. K. Ali, and M. A. Shallal. Solving the space-time fractional RLW and MRLW equations using modified extended tanh method with the Riccati equation. J. Adv. Math. Comput., 21(4):1-15, 2017.
[6] D. Yaro, A. R. Seadawy, D. Lu, W. O. Apeanti, and S. W. Akuamoah. Dispersive wave solutions of the nonlinear fractional Zakhorov-Kuznetsov-Benjamin-Bona-Mahony equation and fractional symmetric regularized long wave equation. Results Phys., 12:1971-1979, 2019.

Darboux Frame with Respect to Generalized Fermi-Walker Derivative

Ayşenur UÇAR ${ }^{1}$, Fatma KARAKUŞㄹ ${ }^{2}$, Yusuf YAYLI ${ }^{3}$
${ }^{1}$ Mechanical Engineering, Faculty of Engineering, Dogus University, Istanbul, Türkiye, aucar@dogus.edu.tr
${ }^{2}$ Mathematics, Faculty of Arts and Sciences, Sinop University, Sinop, Türkiye, fkarakus@sinop.edu.tr
${ }^{3}$ Mathematics, Faculty of Sciences, Ankara University, Ankara, Türkiye, yayli@science.ankara.edu.tr

Rest spaces of an observer are transported through Levi-Civita parallelism when the observer γ is freely falling. If γ is not freely falling, the rest space also is not transported by Levi-Civita parallelism anymore. Therefore, Fermi-Walker derivative was defined for accelerated observers. Then, Pripoae [4,5] enlarged the context by defining a rich class of generalized Fermi-Walker connections which are relevant for both accelerating and non-accelerating observers. In this study, generalized Fermi-Walker derivative, generalized Fermi-Walker parallelism and generalized non-rotating frame are investigated along any curve on any surface in Euclidean space. Initially, we investigate the conditions of the generalized Fermi-Walker parallelism of any vector field along any curve on any surface in Euclidean space by considering the Darboux frame. We show that Darboux frame is generalized non-rotating frame along all curves with the choice of tensor field. We analyse the situation of the generalized Fermi-Walker derivative that coincides with the Fermi-Walker one.
Keywords: Generalized Fermi-Walker derivative, generalized non-rotating frame, Darboux frame.
2020 Mathematics Subject Classification: 53A04, 53B20, 53Z05.

References

[1] A. Uçar, F. Karakuş, and Y. Yaylı, "Generalized Fermi-Walker derivative and nonrotating frame," Int. Journal of Geometric Methods in Modern Physics, 14(09), (2017), 1750131-1750141, Doi: 10.1142/S0219887817501316.
[2] F. Karakus and Y. Yaylı "On the Fermi-Walker derivative and non-rotating frame," Int. Journal of Geometric Methods in Modern Physics, 9(8), (2012), 1250066(11 pp.).
[3] E. Fermi, Atti Accad. Naz. Lincei Cl. Sci. Fiz. Mat. Nat., 31 (1922) 184-306.
[4] G. T. Pripoae, "Generalized Fermi-Walker transport," LibertasMath., XIX, 1999, 65-69.
[5] G. T. Pripoae, "Generalized Fermi-Walker parallelism induced by generalized Schouthen connections," in Proceedings of the Conference of Applied Differential Geometry-General Relativity and the Workshop on Global Analysis Balkan Society of Geometers. Differential Geometry and Lie Algebras, Balkan Society of Geometers, 2000, 117-125.

Generalized Fermi Derivative on Surfaces in Euclidean 3-Space

Ayşenur UÇAR ${ }^{1}$, Fatma KARAKUŞ ${ }^{2}$
${ }^{1}$ Mechanical Engineering, Faculty of Engineering, Dogus University, Istanbul, Türkiye, aucar@dogus.edu.tr
${ }^{2}$ Mathematics, Faculty of Arts and Sciences, Sinop University, Sinop, Türkiye, fkarakus@sinop.edu.tr

To interpret the universe, it needs to be observed. An observer needs an appropriate frame construction its geometric analysis at a proper time. Rest spaces of an observer are transported through Levi-Civita parallelism when the observer γ is freely falling. If γ is not freely falling, the rest space also is not transported by Levi-Civita parallelism anymore. From this point of view, Fermi-Walker derivative was defined for accelerated observers. Thereafter, Pripoae [4,5] enlarged the context by defining a rich class of generalized Fermi-Walker connections which are relevant for both accelerating and non-accelerating observers. In this study, generalized Fermi derivative, generalized Fermi parallelism, and generalized nonrotating frame concepts are given along any curve on any hypersurface in E^{n+1} Euclidean space. The generalized Fermi derivative of a vector field and being generalized non-rotating frame conditions are analyzed along the curve on the surface in Euclidean 3-space. Then a correlation is found between generalized Fermi derivative, Fermi derivative, and Levi-Civita derivative in E^{3}.
Keywords: Generalized Fermi derivative, tensor field, surface.
2020 Mathematics Subject Classification: 53A05, 53B20, $53 Z 05$.

References

[1] A. Uçar, F. Karakuş, and Y. Yaylı, "Generalized Fermi-Walker derivative and nonrotating frame," Int. Journal of Geometric Methods in Modern Physics, 14(09), (2017), 1750131-1750141, Doi: 10.1142/S0219887817501316.
[2] F. Karakuş and Y. Yaylı "The Fermi derivative in the hypersurfaces," Int. Journal of Geometric Methods in Modern Physics, 12, (2015), 1550002 (12 pp.).
[3] E. Fermi, Atti Accad. Naz. Lincei Cl. Sci. Fiz. Mat. Nat., 31 (1922) 184-306.
[4] G. T. Pripoae, "Generalized Fermi-Walker transport," LibertasMath., XIX, 1999, 65-69.
[5] G. T. Pripoae, "Generalized Fermi-Walker parallelism induced by generalized Schouthen connections," in Proceedings of the Conference of Applied Differential Geometry-General Relativity and the Workshop on Global Analysis Balkan Society of Geometers. Differential Geometry and Lie Algebras, Balkan Society of Geometers, 2000, 117-125.
[6] I. M. Benn and R. W. Tucker, "Wave mechanics and inertial guidance," Bull. The American Physical Society, 39(6), (1989), 1594-1601.

Generalized Fermi Derivative with Regard to Hypersurfaces

Ayşenur UÇAR ${ }^{1}$, Fatma KARAKUŞ ${ }^{2}$
${ }^{1}$ Mechanical Engineering, Faculty of Engineering, Dogus University, Istanbul, Türkiye, aucar@dogus.edu.tr
${ }^{2}$ Mathematics, Faculty of Arts and Sciences, Sinop University, Sinop, Türkiye, fkarakus@sinop.edu.tr

The universe needs to be observed to make correct interpretations. An observer needs an appropriate frame construction for the definition of its location and its geometric analysis at a proper time. Rest spaces of an observer are transported through Levi-Civita parallelism when the observer γ is freely falling. If γ is not freely falling, the rest space also is not transported by Levi-Civita parallelism anymore. Thus, Fermi-Walker derivative was defined for accelerated observers. After that, Pripoae [4,5] enlarged the context by defining a rich class of generalized Fermi-Walker connections which are relevant for both accelerating and non-accelerating observers. In this study, generalized Fermi derivative, generalized Fermi parallelism, and generalized non-rotating frame concepts are given along any curve on any hypersurface in E^{n+1} Euclidean space. After that, we examine generalized Fermi parallel vector fields and conditions of being generalized non-rotating frame with the tensor field in E^{4}. Generalizations have been made in E^{n}.
Keywords: Generalized Fermi derivative, generalized non-rotating frame, hypersurface.
2020 Mathematics Subject Classification: 53A05, 53B20, 53Z05.

References

[1] A. Uçar, F. Karakuş, and Y. Yaylı, "Generalized Fermi-Walker derivative and nonrotating frame," Int. Journal of Geometric Methods in Modern Physics, 14(09), (2017), 1750131-1750141, Doi: 10.1142/S0219887817501316.
[2] F. Karakuş and Y. Yaylı "The Fermi derivative in the hypersurfaces," Int. Journal of Geometric Methods in Modern Physics, 12, (2015), 1550002 (12 pp.).
[3] E. Fermi, Atti Accad. Naz. Lincei Cl. Sci. Fiz. Mat. Nat., 31 (1922) 184-306.
[4] G. T. Pripoae, "Generalized Fermi-Walker transport," LibertasMath., XIX, 1999, 65-69.
[5] G. T. Pripoae, "Generalized Fermi-Walker parallelism induced by generalized Schouthen connections," in Proceedings of the Conference of Applied Differential Geometry-General Relativity and the Workshop on Global Analysis Balkan Society of Geometers. Differential Geometry and Lie Algebras, Balkan Society of Geometers, 2000, 117-125.
[6] I. M. Benn and R. W. Tucker, "Wave mechanics and inertial guidance," Bull. The American Physical Society, 39(6), (1989), 1594-1601.

Centered Polygonal Numbers and Polygonal Numbers

Umit Sarp
Distance Education, Application and Research Center, İzmir Kâtip Çelebi University, İzmir, TÜRKİYE, umit.sarp@ikcu.edu.tr

Polygonal numbers are numbers that can be represented by a regular and discrete geometric pattern of evenly spaced points. This study presents a brief explanation on the classifications of polygonal numbers $[1,2]$. Then some different ways for covering "centered polygonal numbers, $C S_{m}(n)$ " with "polygonal numbers, $S_{m}(n)$ " are given. These proofs are supported by visual proofs.
Keywords: polygonal numbers, Diophantine equation, visual proofs. 2020 Mathematics Subject Classification: 11A25,11A67,11B75.

References

[1] Elena Deza and Michel Deza. Figurate numbers. World Scientific, Singapore, 2012.
[2] U. Sarp. Visualising connections between types of polygonal number. The Mathematical Gazette (It was accepted for publication in the March 2023 issue).

B-spline method for solving fractional delay differential equations

Mwaffag Sharadga ${ }^{1}$, Muhammed Syam ${ }^{2}$, Ishak Hashim ${ }^{3}$
${ }^{1}$ Abu Dhabi Polytechnic, Abu Dhabi, United Arab Emirates, mwafag.sharadga@adpoly.ac.ae
${ }^{2}$ Department of Mathematical Sciences, UAE University, Al-Ain, UAE, m.syam@uaeu.ac.ae
${ }^{3}$ School of Mathematical Sciences, Universiti Kebangsaan, Bangi Selangor, Malaysia, ishak_h@ukm.edu.my

In this paper, we used the fractional collocation method based on the Bspline basis to derive the numerical solutions for a special form of fractional delay differential equations (DFDEs). The fractional derivative used is defined in the sense of Caputo. So, we can represent the DFDE under consideration into a matrix form that can be solved using matrix operations and tools from linear algebra. As a result, we get algebraic equations with unknown coefficients that can be solved efficiently using a computer algorithm. To illustrate the validity and efficiency of the method, exact and approximate solutions are compared, and absolute errors are found using different examples. The numerical results, which are backed up by simulation, reveal that the absolute error is very small and that the approach is extremely efficient.

Keywords: Fractional delay differential equation; B-Spline method; Caputo derivative.
2020 Mathematics Subject Classification: 76W05, 76A05, 65L05.

References

[1] Tolga Omay and Dumitru Baleanu. Fractional unit-root tests allowing for a fractional frequency flexible Fourier form trend: predictability of Covid-19. 2021:167, 2021.
[2] Ali S. Alshomrani, Malik Z. Ullah, and Dumitru Baleanu. Caputo SIR model for COVID19 under optimized fractional order. Advances in Difference Equations, 2021(1):185, dec 2021.
[3] Saeed Ahmad, Rafi Ullah, and Dumitru Baleanu. Mathematical analysis of tuberculosis control model using nonsingular kernel type Caputo derivative. 2021:26, 2021.
[4] Thabet Abdeljawad and Dumitru Baleanu. Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel. Chaos, Solitons \& Fractals, 102:106110, sep 2017.
[5] Mohamed Abdelhakem, Doha Mahmoud, Dumitru Baleanu, and Mamdouh El-Kady. Shifted ultraspherical pseudo-Galerkin method for approximating the solutions of some types of ordinary fractional problems. 2021:110, 2021.

ATATURK
UNIVESTYY
ruvicatons

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

[6] Muhammed I. Syam and Mohammed Al-Refai. A reliable method for first order delay equations based on the implicit hybrid method. Alexandria Engineering Journal, 59(4):2677-2681, aug 2020.
[7] Bothayna S. Kashkari and Muhammed I. Syam. A numerical approach for investigating a special class of fractional Riccati equation. Results in Physics, 17:103080, jun 2020.
[8] A. K. Alomari, Muhammed I. Syam, N. R. Anakira, and A. F. Jameel. Homotopy Sumudu transform method for solving applications in physics. Results in Physics, 18:103265, sep 2020.
[9] Antonio Coronel-Escamilla and José Francisco Gómez-Aguilar. A novel predictorcorrector scheme for solving variable-order fractional delay differential equations involving operators with Mittag-Leffler kernel. Discrete \& Continuous Dynamical Systems - Series S, 13(3):561-574, 2020.
[10] Bothayna S.H. Kashkari and Muhammed I. Syam. Fractional-order Legendre operational matrix of fractional integration for solving the Riccati equation with fractional order. Applied Mathematics and Computation, 290:281-291, nov 2016.
[11] Sedaghat Shahmorad, M. H. Ostadzad, and D. Baleanu. A Tau-like numerical method for solving fractional delay integro-differential equations. Applied Numerical Mathematics, 151:322-336, may 2020.
[12] K.l Chen, Y., Moore. Analytical stability bound for a class of delayed fractional-order dynamic system. Nonlinear Dynamics, 29((1-4)):191-20, 2002.
[13] Asifa Tassaddiq, Muhammad Yaseen, Aatika Yousaf, and Rekha Srivastava. A cubic B-spline collocation method with new approximation for the numerical treatment of the heat equation with classical and non-classical boundary conditions. Physica Scripta, 96(4):045212, apr 2021.
[14] Hikmet Çağlar, Nazan Çağlar, and Mehmet Özer. B-spline solution of non-linear singular boundary value problems arising in physiology. Chaos, Solitons \mathcal{E} Fractals, 39(3):12321237, feb 2009.
[15] Chun Gang Zhu and Wen Sheng Kang. Numerical solution of Burgers-Fisher equation by cubic B-spline quasi-interpolation. Applied Mathematics and Computation, 216(9):26792686, jul 2010.

Generalized Fibonacci Polynomials Associated with Finite Operators

Emrah Polatlı ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Arts and Sciences, Zonguldak Bülent Ecevit University, Zonguldak, Turkey, emrahpolatli@gmail.com

Fibonacci numbers and their various generalizations are an extensive area of study that many mathematicians have dealt with for more than a century. There are numerous formulas containing these numbers in the literature. However, finite operators (such as identity operator, the forward difference operator, the backward difference operator, the means operator, Gould operator) have lots of applications in engineering, physics, and applied mathematics. In addition, many researchers in different fields frequently use finite operators in their calculations. Accordingly, the aim of this talk is to show that some properties of the (p, q)-Fibonacci finite operator polynomials by implementing the finite operator to the (p, q)-Fibonacci polynomials. We derive the Binet-like formula, various generating functions and binomial sum of (p, q)-Fibonacci finite operator polynomials. After that we give determinantal expressions for these finite operator polynomials and their special cases. Lastly, we regain, in a different way, recurrence relation for these finite operator polynomials.
Keywords: Finite operators, Generating function, Tridiagonal determinant. 2020 Mathematics Subject Classification: 11B39, 11C08, 11C20, 11Y55.

References

[1] M. Andelić, C. M. da Fonseca, A determinantal formula for the generalized Fibonacci numbers, Matematiche (Catania) 74, 363-367 (2019).
[2] M. Andelić, C. M. da Fonseca, On a determinantal formula for derangement numbers, Kragujevac Journal of Mathematics, 47(6), 847-850 (2023).
[3] M. Andelić, C. M. da Fonseca, On the constant coefficients of a certain recurrence relation: A simple proof, Heliyon, 7, e07764, (2021). https://doi.org/10.1016/j.heliyon.2021.e07764
[4] M. Andelić, C. M. da Fonseca, A short proof for a determinantal formula for generalized Fibonacci numbers, LE MATEMATICHE, 74 (2), 363-367 (2019).
[5] N. Bourbaki, Elements of Mathematics: Functions of a Real Variable: Elementary Theory (Springer, Berlin, 2004). Translated from the 1976 French original by Philip Spain. Elements of Mathematics (Berlin). https://doi.org/10.1007/978-3-642-59315-4
[6] N.D. Cahill, J.R.D'Errico, D.A.Narayan, J.Y.Narayan, Fibonacci determinants. College Math. J. 33(3), 221-225 (2002).

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

[7] C. M. da Fonseca, On the connection between tridiagonal matrices, Chebyshev polynomails, and Fibonacci numbers, Acta Univ. Sapientiae, Mathematica, 12, 280-286, (2020).
[8] C. M. da Fonseca, Some comments on the properties of a particular tridiagonal matrix, Journal of Discrete Mathematical Sciences and Cryptography, 24(1), 49-51 (2021).
[9] C. M. da Fonseca, On a closed form for derangement numbers: an elemantary proof, RACSAM, 114, Article ID:146, (2020). https://doi.org/10.1007/s13398-020-00879-3
[10] C. M. da Fonseca, Unifying some Pell and Fibonacci identities, Appl. Math. Comput. 236, 41-42 (2014).
[11] B.-N. Guo, E. Polatl, F. Qi, Determinantal Formulas and Recurrent Relations for Bi-Periodic Fibonacci and Lucas Polynomials. In: Paikray S.K., Dutta H., Mordeson J.N. (eds) New Trends in Applied Analysis and Computational Mathematics. Advances in Intelligent Systems and Computing, vol 1356. Springer, Singapore. https://doi.org/10.1007/978-981-16-1402-6_18
[12] A. F. Horadam, Extension of a synthesis for a class of polynomial sequences, Fibonacci Quart. 34(1996), 68-74.
[13] C. Kızılates, New families of Horadam numbers associated with finite operators and their applications, Math. Methods Appl. Sci., 2021, 10.1002/mma.7702.
[14] G. Lee, M. Aşçı, Some Properties of the (p, q)-Fibonacci and (p, q)-Lucas Polynomials, Journal of Applied Mathematics, 2012(2012), Article ID: 264842. https://doi.org/10.1155/2012/264842
[15] Y. Şimşek, Some new families of special polynomials and numbers associated with Finite Operators, Symmetry, 12(237)(2020), 1-13.
[16] Y. Şimşek, Construction method for generating of special numbers and polynomials arising from analysis of new operators, Math. Meth. Appl. Sci., 41(16)(2018), 6934-6954.
[17] J. Wang, Some new results for the (p, q) -Fibonacci and Lucas polynomials, Advances in Difference Equations, 2014(2014), Article ID: 64.

Existence problem for first order evolution inclusion

Nouha Boudjerida ${ }^{1}$, Doria Affane ${ }^{2}$, Yarou Mustapha Fateh ${ }^{3}$
Department, Mathematics, University, Jijel, Algeria,
${ }^{1}$ e-mail nouhaboudjerida@gmail.com
2 e-mail affanedoria@yahoo.fr
3 e-mail mfyarou@yahoo.com

In the finite dimensional setting we are interested to the study of the existence of absolutely continuous solutions for a perturbed first order sweeping process differential inclusion governed by the normal cone to a mobile set at point $x(t)$, it has the following form

$$
\left\{\begin{array}{l}
-\dot{x}(t) \in N_{C_{b}(t)}(x(t))+F(t, x(t)), \quad \text { a.e. } t \in[0, T] \\
x(t) \in C_{b}(t) \quad \text { for all } t \in[0, T] \\
x(0)=x_{0} \in C_{b}(0)
\end{array}\right.
$$

where $C_{b}(t)=C(t) \cap b \bar{B}$ with $b>0$, is a moving set time depending with closed convex values of \mathbb{R}^{n} and $F:[0, T] \times b \bar{B} \rightrightarrows \mathbb{R}^{n}$ is a multifunction with nonempty, closed, nonconvex values and Lipschitz with respect to the ρ-Hausdorff distance with minimal norm satisfies a linear growth condition. In our proof we use a discretization technique based on the catching-up projection algorithm, and we use the basic assumption ρ-Hausdorff Lipschitz property of $F(t, x)$ with respect to x and t, i.e.,

$$
\operatorname{haus}_{\rho}(F(t, x), F(s, y))<\beta\|x-y\|+\gamma|t-s|
$$

where for any $\rho \geq 0, \operatorname{haus}_{\rho}(.,$.$) is the \rho$-Hausdorff metric on the space of nonempty closed sets, while $\beta, \gamma \geq 0$.
Keywords: Normal cone, sweeping process, perturbation. 2020 Mathematics Subject Classification: 34A60, 28A20, 28A25.

References

[1] M. Aissous D. Affane and M. F. Yarou. Existence results for sweeping process with almost convex perturbation. Bulletin mathématique de la Société des Sciences Mathématiques de Roumanie, 61(2):119-134, 2018.
[2] Jean-Pierre Aubin and Arrigo Cellina. Differential inclusions: set-valued maps and viability theory. Springer-Verlag, Berlin, 1984.

Simultaneously Square and Centered Square Numbers Related with Pell and Lucas Numbers

Ahmet EMIN ${ }^{1}$

${ }^{1}$ Ministry of National Education, 10662 Karesi, Balıkesir, Turkey, drahmetemin@gmail.com

Polygonal numbers and centered polygonal numbers are positive integer numbers that can be denoted by regular geometric patterns. The theory of polygonal numbers and centered polygonal numbers does not belong to the central domains of mathematics, but the beauty of these numbers has attracted the attention of many scientist for thousands of years, see [1]. One of these scientists is Schlicker. In [2], he proved which numbers are simultaneously polygonal numbers and centered polygonal numbers.
In this talk, we aim to inform the audience about definition and some properties of polygonal numbers and centered polygonal numbers. In particular, we will discuss square numbers and centered square numbers with the pell equation $x^{2}-k(k-2) y^{2}=2 k$, for $k=4$. And finally we studied positive solutions of this equation by using pell and lucas numbers.
Keywords: Polygonal numbers, centered polygonal numbers, pell equation. 2020 Mathematics Subject Classification: 11A25, 11A67, 11D41.

References

[1] Elena Deza and Michel Deza. Figurate numbers. World Scientific, 2012.
[2] Steven J Schlicker. Numbers simultaneously polygonal and centered polygonal. Mathematics Magazine, 84(5):339-350, 2011.

The Drazin Inverse for Closed Linear Operators

MOHAMMED DRISSI-ALAMI ${ }^{1}$, MOHAMMED KACHAD ${ }^{2}$

${ }^{1}$ Department of mathematics, Faculty of sciences and Technologies, University of Moulay Ismail, Errachidia, Morocco, m.drissialami@edu.umi.ac.ma
${ }^{2}$ Department of mathematics, Faculty of sciences and Technologies, University of Moulay Ismail, Errachidia, Morocco, kachad.mohammed@gmail.com

In this work, we define an elementary introduction to the Drazin inverse for closed linear operators, give some recent results of Koliha and Trung Dinh Tran, and characterize the different theorems yielded on complex Banach spaces. Furthermore, we present some of the most important characterization of Drazin inverse; in particular, the Drazin invertibility of a closed linear operator T is equivalent to 0 not being an accumulation point of the spectrum of T , also, it is equivalent to T being the direct sum of two operators, where the first one is bounded quasi-nilpotent, and the second one is closed invertible.
The following are some basic concepts of operator theory of closed linear operators we rely on [1]. By $\mathcal{C}(X)$ we denote the space of all closed linear operators T with domain and range in a banach space $X ; \mathcal{D}(T), \mathcal{N}(T)$ and $\mathcal{R}(T)$ denote the domain, null-space and rang of T. If $T \in \mathcal{C}(X)$, then $\rho(T)$ denote the resolvent set of T and $\sigma(T)$ the spectrum of T. By iso $\sigma(T)$ and acc $\sigma(T)$ we define the set of all isolated and accumulation spectral points of T.
Keywords: Drazin inverse, closed linear operators.
2020 Mathematics Subject Classification: 65F20, 47A08.

References

[1] A.E. TAYLOR, D.C. Lay, Introduction to Functional analysis, 2nd ed., Wiley, New York 1980.
[2] Introduction To Functional Analysis; 2nd edition (Angus E. Taylor and David C. Lay). SIAM Review, 24(1), p. 89.
[3] Kaashoek, Marinus A.. Ascent, descent, nullity and defect, a note on a paper by A. E. Taylor. Mathematische Annalen 172 (1967): 105-115.
[4] Kaashoek, M,A,: Closed linear operators on banach spaces. Thesis, University of leiden, 1964.
[5] Koliha, J. and Tran, Trung. (2001). The Drazin inverse for closed linear operators and the asymptotic convergence of C0-semigroups. Journal of Operator Theory. 46.
[6] Taylor, A.E. Theorems on ascent, descent, nullity and defect of linear operators. Math. Ann. 163, 18-49 (1966). https://doi.org/10.1007/BF02052483

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

Durrmeyer-type generalization of some linear positive operators

Kadir Kanat ${ }^{1}$, Melek Sofyalıoğlu ${ }^{2}$, Selin Erdal ${ }^{3}$
${ }^{1}$ Mathematics, Polatlı Faculty of Science and Arts, Ankara Hacı Bayram Veli University, Ankara, Turkey, kadir.kanat@hbv.edu.tr
${ }^{2}$ Mathematics, Polatlı Faculty of Science and Arts, Ankara Hacı Bayram Veli University,
Ankara, Turkey, melek.sofyalioglu@hbv.edu.tr
${ }^{3}$ Mathematics, Polatlı Faculty of Science and Arts, Ankara Hacı Bayram Veli University, Ankara, Turkey, selin.erdal@hbv.edu.tr

In this talk, we firsly give the historical background of the linear positive operators. Then we consider the Durrmeyer type generalization of the well-known linear and positive operators. After calculating moments and central moments, we mention uniform convergence and approximation properties of these operators. In the last part, we give the rate of convergence by using modulus of continuity, with the help of functions, which belong to Lipschitz class and by the help of Peetre- \mathcal{K} functionals.
Keywords: Modulus of continuity, Lipschitz class, Peetre- \mathcal{K} functional 2020 Mathematics Subject Classification: 41A25, 41A36, 47A58.

References

[1] V.K. Weierstrass. Über die analytische Darstellbarkeit sogennanter willkürlicher Functionen einer reellen Veränderlichen. Sitzungsberichte der Akademie zu Berlin, 1885: 633-639, 789-805.
[2] Bernstein S. N. (1912). Démonstration du théorem de Weierstrass fondée sur le calculu des probabilités. Commun. Kharkov Math. Soc., 13(2), 1-2.
[3] Kajla A., Mursaleen M., Acar T.(2020). Durrmeyer-Type Generalization of Parametric Bernstein Operators. Symmetry. 2020; 12(7):1141. https://doi.org/10.3390/sym12071141
[4] Korovkin, P.P. (1953) On convergence of linear operators in the space of continuous functions (Russian). Dokl Akad Nauk SSSR (N.S.) 90:961--964
[5] Acar, T., Acu, A.M., Manav, N. Approximation of functions by genuine BernsteinDurrmeyer type operators. J. Math. Inequal. 2018, 12, 975-987.

Local existence of solutions for a quasilinear hyperbolic equation involving the p-laplacian operator.

Abir Bounaama ${ }^{1}$
${ }^{1}$ Laboratory of Applied Mathematics and History and Didactics of Mathematics LAMAHIS, Faculty of Science, University of 20 August 1955 Skikda, Algeria e-mail: a.bounaama@univ-skikda.dz

In this work, we study the value problem related to the quasilinear hyperbolic equation involving the p-laplacian operator.
Our purpose in this paper is: firstly to give an existence theorem for local solutions in Sobolev spaces to the problem.
Then, prove of local existence for initial boundary value problems involving the p-laplacian operator by using Faedo Galerkin method. Our goal here, is to prove the existence of solutions for a quasilinear hyperbolic equation involvig the p-laplacian operator which defined as

$$
\Delta_{p}=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)
$$

Usually $p \leq 1$.
Keywords: Existence, weak solution, sobolev space, p-laplacian operator. 2020 Mathematics Subject Classification: 35A01, 35D30, 46E36.

References

[1] V. Georgiev and G. Todorova. Existence of a solution of the wave equation with nonlinear damping and source terms. J. Differ. Equ 1994. Vol. 109, pp. 295-308.
[2] Y. Ye. Existence and decay estimate of global solutions to system of nonlinear wave equations with damping and source terms. Abstr. Appl. Anal, 2013.
[3] E. Piskin and N. Polat. Global existence, decay and blow up of solutions for coupled nonlinear wave equations with damping and source terms. Turk. J. Math 2013. Vol. 37, pp. 633-651.

A New Generalization Of The Min and Max Matrices

Nazlıhan Terzioğlu ${ }^{1}$, Can Kızılateş ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Arts and Sciences, Zonguldak Bülent Ecevit University, Zonguldak, Turkey, nazlihanterzioglu@gmail.com
${ }^{2}$ Department of Mathematics, Faculty of Arts and Sciences, Zonguldak Bülent Ecevit University, Zonguldak, Turkey, cankizilates@gmail.com

Matrix theory is widely used in a variety of areas including applied mathematics, computer science, economics, engineering, operations research, statistics, and others. From past to present, different types of matrices have been defined and studied miscellaneous properties of these matrices such as determinant, inverse, norm and factorizations have been studied by mathematicians.
In this talk, we define a new generalization of the min and max matrices. These newly established matrices are the general form of the min and max matrices. Based on this definition, various linear algebra properties such as the determinants, inverses, norms and factorizations are examined of these matrices. Moreover, we define the Hadamard inverse matrices of these newly established matrices and obtain some linear algebra properties of these type of matrices. Finally, in order to verify our theoretical results, we give some numerical examples. These matrices can be used in many branches of mathematics as well as applied sciences, encryption, and image processing.
Keywords: Max Matrix, Min Matrix, Linear Algebra.
2020 Mathematics Subject Classification: 15A15, 15B05, 15A60,

References

[1] P. Haukkanen M. Mattila. Studying the various properties of min and max matriceselementary vs. more advanced methods. Spec. Matrices, 4:101-109, 2016.
[2] R. Bhatia. Min matrices and mean matrices. Math. Intelligencer, 33(2):22-28, 2011.
[3] M. Bahsi D. Ozgul. Min matrices with hyper lucas numbers. Journal of Science and Arts, 4(53):855-864, 2020.
[4] B. Pirouz S.H.J Petroudi. A particular matrix, its inversion and some norms. Appl. Comput. Math, 4:47-52, 2015.
[5] N. Tuglu C. Kizilates. On the bounds for the spectral norms of geometric circulant matrices. J Inequal Appl, 2016(312), 2016.
[6] S. Kesim N. Tuglu, C. Kizilates. On the harmonic and hyperharmonic fibonacci numbers. Adv Differ Equ, 2015(297), 2015.

Some Fixed Point Results in Soft Fuzzy Metric Spaces

Merve İnce ${ }^{1}$, Ferhan Şola Erduran ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Gazi University, Ankara, Turkey, merve.ince1@gazi.edu.trl
${ }^{2}$ Department of Mathematics, Faculty of Science, Gazi University, Ankara, Turkey, ferhansola@gazi.edu.tr

Consequence of many forms of uncertainties, we can't always use traditional methods to solve some situations. Theory of probability [11], theory of fuzzy sets [14], theory of intuitionistic fuzzy sets [1], and theory of interval mathematics [2] are examples of mathematical methods that can be used to solve these types of problems. However, as [10] points out, these hypotheses have some flaws. The reason behind this is that inadequacy of the parametrization tool of the theories is one of the difficulties. As a result, Molodtsov [10] proposed the the concept of soft set theory as a non-difficult mathematical tool for uncertain situations. The soft set consists of a parametrized family of subsets of universal set. The parameter set could be anything.

Maji et al. [8, 9] have been advancing their soft set theory research. They presented a theoretical study of soft set theory as well as a soft set application in a decision-making situation. Many authors explored soft set theory and its applications in other fields after that [3, 7, 12, 13]. In addition, Das and Samanta $[4,5,6]$ contributed to this field by proposing the concept of soft metric space, which is based on soft points of soft sets. Afterwards, Erduran et al.[15] defined soft fuzzy metric spaces in terms of soft points by the help of soft t-norm and investigated its topological structure.

On the other hand, Banach fixed point principle, which has applications in different fields such as applied mathematics, mathematical analysis, solving economic problems etc., was established by Banach[17] in 1922. Later on a large number of researchers were executed on a variety of generalizations of this principle. In 1968, using a different contraction condition from Banach, Kannan[18] proved a fixed point theorem. Kannan's fixed point theorem is also significant because Subrahmanyam [16] shown that it characterizes metric completeness. That is, a metric space X is complete if and only if it has a fixed point for every Kannan mapping.

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

The purpose of this study is to give Banach and Kannan's version of fixed point theorems in soft fuzzy metric spaces. Our results can be used for further fixed point theory studies.
Keywords: fixed point, soft fuzzy metric, soft set.
2020 Mathematics Subject Classification: 47H10, 54H25, 54A40.

References

[1] K. T. Atanassov. Intuitionistic fuzzy sets. Fuzzy Sets and Systems., 20(1):87-96, 1986.
[2] K. T. Atanassov. Operators over interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems., 64(2):159-174, 1994.
[3] Aygünoğlu, A. Soft topological spaces. Ph.D Thesis, The Graduate School of Natural and Applied Science of Kocaeli University., 2011.
[4] S. Das and S. K. Samanta. Soft metric. Ann. Fuzzy Math. Inform., 6(1):77-94, 2013.
[5] S. Das and S. K. Samanta. Soft real sets, soft real numbers and their properties. J. Fuzzy Math., 20(3):551-576, 2012.
[6] S. Das and S.K. Samanta. On soft metric spaces. J. Fuzzy Math., 21(3):707-734, 2013.
[7] Güler, A. C., Yıldırım, E. D. and Ozbakır, O. B. A fixed point theorem on soft g-metric spaces. J. Nonlinear Sci. Appl., 9(3):885-894, 2016.
[8] Roy A. Maji, P. K. and R. Biswas. An application of soft sets in a decision making problem. Computers Math. Appl., 44:1077-1083, 2002.
[9] Biswas R. Maji, P. K. and A. Roy. Soft set theory. Computers \mathcal{B} Mathematics with Applications., 45(4-5):555-562, 2003.
[10] D. Molodtsov. Soft set theory-first results. Computers 8 Mathematics with Applications., 37(4-5):19-31, 1999.
[11] B. Schweizer and A. Sklar. Statistical metric spaces. Pacific J. Math., 10(1):313-334, 1960.
[12] M. Shabir and M. Naz. On soft topological spaces. Computers \& Mathematics with Applications., 61(7):1786-1799, 2011.
[13] O. A. Tantawy and Hassan R. M. Soft real analysis. Journal of Prograssive in Mathematics., 8(1):1207-1219, 2016.
[14] L. A. Zadeh. Fuzzy sets. Information and Control., 8(3):338-353, 1965.
[15] Erduran, F. Ş., Yiğit, E., Alar, R. and Gezici, A. Soft fuzzy metric spaces. General Letters in Mathematics, 3(2):91-101, 2017.
[16] P. V. Subrahmanyam. Completeness and fixed-points. Monatshefte Math., 80:325-330, 1975.
[17] S. Banach. Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales. Fundam. Math., 3:133-181, 1922.
[18] R. Kannan. Some results on fixed points. Bulletin of the Cal-cutta Mathematical Society., 60:71-76, 1968.

A generalized exponential expansion method to simulate two third-order KdV-type equations

Riadh Hedli ${ }^{1}$, Fella Berrimi ${ }^{2}$
${ }^{1} 1$ Department of Mathematics, Faculty of Sciences, University of Ferhat Abbas Setif 1, 19000, Algeria, e-mail: riadh.hedli@univ-setif.dz
${ }^{2}$ Department of Computer Science, Faculty of Sciences, University of Ferhat Abbas Setif 1, 19000, Algeria, e-mail: fella.berimi@univ-setif.dz

Nonlinear evolution equations are an essential mathematical tool for studying a wide range of physical phenomena and engineering. Because of this importance, many mathematical approaches have been established and developed to create their traveling wave solutions. In this paper, we investigate the Gardner equation and the potential KdV equation through a well-known analytical approach, namely the generalized $\exp (-\varphi(\xi))$-expansion method. We found some traveling wave solutions of the above mentioned equations.

Keywords: generalized $\exp (-\varphi(\xi))$-expansion method, nonlinear evolution equation, Gardner equation, potential KdV equation, traveling wave solution. $(-\theta(\vartheta))$

2020 Mathematics Subject Classification: 35Q53, 35G20, 35C07

References

[1] H. O. Roshid and M. A. Rahman. The $\exp (-\phi(\eta))$-expansion method with application in the $(1+1)$ - dimensional classical boussinesq equations. Results in Physics, 4:150-155, 2014.
[2] R. Hedli and A. Kadem. Exact traveling wave solutions to the fifth-order kdv equation using the exponential expansion method. IAENG International Journal of Applied Mathematics, 50(1):121-126, 2020.
[3] D. Daghan and O. Donmez. Exact solutions of the gardner equation and their applications to the different physical plasmas. Brazilian Journal of Physics, 46:321-333, 2016.
[4] H. G"unerhan. Exact traveling wave solutions of the gardner equation by the improved $\tan (\theta(\vartheta))$ - expansion method and the wave ansatz method. Mathematical Problems in Engineering, 2020(ID 5926836):9 pages, 2020.
[5] B. H. Malwe, G. Betchewe, S. Y. Doka, and T. C. Kofane. Travelling wave solutions and soliton solutions for the nonlinear transmission line using the generalized riccati equation mapping method. Nonlinear Dynamics, 84(1):171177, 2016.
[6] M. S. Islam, K. Khan, and M. A. Akbar. Application of the improved f -expansion method with riccati equation to find the exact solution of the nonlinear evolution equations. Journal of the Egyptian Mathematical Society, 25(1):13-18, 2017.
[7] A. Sonmezoglu, M. Ekici, M. Moradi, M. Mirzazadeh, and Q. Zhou. Exact solitary wave solutions to the new (3+1)-dimensional generalized kadomtsevpetviashvili equation. Optik, 128:77-82, 2017.
[8] M. G. Hafez and D. Lu. Traveling wave solutions for space-time fractional nonlinear evolution equations. http://arxiv.org/abs/1512.00715, 2015.
[9] M. Y. Ali, M. G. Hafez, M. K. H. Chowdury, and M. T. Akter. Analytical and traveling wave solutions to the fifth order standard sawada-kotera equation via the generalized $\exp (-\phi(\xi))$-expansion method. Journal of Applied Mathematics and Physics, 4(2):262-271, 2016.
[10] D. Lu and M. Ye. Traveling wave solutions for the nonlinear fractional sharma-tasso-olever equation. International Journal of Mathematics Research, 6(1):36-45, 2017.
[11] F. Ferdous, M. G. Hafez, and M. Y. Ali. Obliquely propagating wave solutions to conformable time fractional extended zakharov-kuzetsov equation via the generalized $\exp (-\phi(\xi))$-expansion method. SeMA Journal, 76:109-122, 2018.
[12] F. Ferdous, M. G. Hafez, A. Biswas, M. Ekici, Q. Zhou, M. Alfiras, S. P. Moshokoa, and M. Belic. Oblique resonant optical solitons with kerr and parabolic law nonlinearities and fractional temporal evolution by generalized $\exp (-\phi(\xi))$-expansion. Optik, 178:439-448, 2019.
[13] A.-M.Wazwaz. New solitons and kink solutions for the gardner equation. Communications in Nonlinear Science and Numerical Simulation, 12(8):13951404, 2007.
[14] Ak. Turgut and D. Sharanjeet. A practical and powerful approach to potential kdv and benjamin equations. Beni-Suef University Journal of Basic and Applied Sciences, 6(4):383-390, 2017.
[15] H. Triki, Ak. Turgut, M. Ekici, A. Sonmezoglu, M. Mirzazadeh, A. H. Kara, and T. Aydemir. Some new exact wave solutions and conservation laws of potential korteweg-de vries equation. Nonlinear Dynamics, 89:501-508, 2017.
[16] G.-W. Wang, T.-Z. Xu, G. Ebadi, S. Johnson, A. J. Strong, and A. Biswas. Singular solitons, shock waves, and other solutions to potential kdv equation. Nonlinear Dynamics, 76(2):1059-1068, 2014.
[17] A. Biswas, S. Kumar, E. V. Krishnan, B. Ahmed, A. Strong, S. Johnson, and A. Yildirim. Topological solitons and other solutions to potential kdv equation. Romanian Reports on Physics, 65(4):1125-1137, 2013.
[18] B. Ghanbari and D. Baleanu. New solutions of gardner's equation using two analytical methods. Frontiers in Physics, 7(202):1143-1148, 2019.
[19] E. V. Krishnan, H. Triki, M. Labidi, and A. Biswas. A study of shallow water waves with gardner's equation. Nonlinear Dynamics, 66:497-507, 2011.
[20] C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura. Method for solving the korteweg-devries equation. Physical Review Letters, 19(19):10951097, 1967.

COMPARATIVE NUMERICAL STUDY BETWEEN LINE SEARCH METHODS AND MINORANT FUNCTIONS IN BARRIER LOGARITHMIC METHODS FOR LINEAR PROGRAMMING

Assma LEULMI ${ }^{1}$, Soumya LEULMI ${ }^{2}$
${ }^{1}$ Department of mathematics, Faculty sciences, University of Ferhat Abbas, Setif, Algeria, as ${ }_{s}$ maleulmi@yahoo.fr
${ }^{2}$ Department of mathematics, Faculty sciences, University of 20 August 1955, Skikda, Algeria, leulsou@yahoo.fr
${ }^{3}$ Department, Faculty, University, City, Country, e-mail

Interior-point methods are one of the efficient methods developed to solve linear and non linear programming problems. Several algorithms have been proposed to solve the linear programming problem, where, we distinguish three fundamental classes of interior point methods namely: projective interior point methods and their alternatives, central trajectory methods, barrier methods [2]. Our work is based on the latter type of interior point methods for solving linear programming problems. In this work, we propose a logarithmic barrier interiorpoint method for solving linear programming problems (LP). In fact, the main difficulty to be anticipated in establishing an iteration in such a method will come from the determination and computation of the step-size. This paper presents a comparative numerical study between line search methods and minorant functions to compute the displacement step in barrier logarithmic method for linear programming. This study favourite minorant function on line search which is promoted by numerical experiments.

Keywords: Interior point methods, Line search, Minorant function. 2020 Mathematics Subject Classification: 90C22, 90C51. Bibliography:
J.P. Crouzeix, B. Merikhi, Algorithm barrier method for semidefinite programming,RAIROOperations Research, 42, (2008) pp. 123139.
I.I. Dikin, Iterative solution of problems of linear and quadratic programming, Doklady Akademiia Nauk SSSR, 174 (1967) pp. 747748.
A. Leulmi, S. Leulmi, Logarithmic barrier method via minorant function for linear programming, Journal of Siberian Federal University. Mathematics Physics 2019, 12(2), 191-201.

Local linear estimation of a conditional quantile for randomly censored functional depandent data

Sarra Leulmi ${ }^{1}$, Farid Leulmi ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty Sciences Exacte, University Brothers Mentouri, Constantine, Algeria, math17sara@yahoo.fr
${ }^{2}$ Department of Mathematics, Faculty Sciences Exacte, University Brothers Mentouri, Constantine, Algeria, farid_leulmi@yahoo.fr

The nonparametric methods are practical ways to deal with the functional data sets. There are nowadays a large number of fields where functional data are collected such as environmetrics, medicine and finance. In the complete data case and when the regressors are of functional type, [1] have introduced a more general and flexible method than the kernel one. It is the so called local modelling approach. Whereas, in the censoring case, we refer to [2].
In many situations we have to deal with dependent functional complete datasets. One of the most popular examples come from the study of a strong mixing through the functional approach proposed by [3] for nonparametric conditional models, they established their pointwise almost complete convergence. On the other hand, [4] are established the asymptotic properties for the functional locally modeled of the conditional cumulative distribution function.
To our knowledge, the almost complete convergence of the local linear estimation of the conditional quantile based on censored and functional dependent data has not been studied in statistical literature. So, in this work, we address this problem. More precisely, we first present a local linear estimator of the conditional quantile, when the sample is an α-mixing sequence. After that, we establish the pointwise and the uniform almost complete convergence of the conditional distribution of the conditional distribution. Then, we deduce the almost complete convergence of the conditional quantile estimator. A simulation study is carried out to show the good behaviour of our estimator.
Keywords: Censored data, Fonctional data, Depandent data.
2020 Mathematics Subject Classification: 62G05, 62G20, 62G99.

References

[1] P. Vieu J. Barrientos-Marin, F. Ferraty. Locally modelled regression and functional data. Journal of Nonparametric Statistics, 22(5):617-632, 2010.
[2] S. Leulmi. Local linear estimation of the conditional quantile for censored data and functional regressors. Journal of Nonparametric Statistics, pages 1-15, 2019.
[3] P.Vieu F .Ferraty. Nonparametric functional data analysis. Theory and Practice. Springer Series in Statistics, New York, 2006.
[4] L. Ait-Hennani O. Bouanani, S. Rahmani. Local linear conditional cumulative distribution function with mixing data. Arabian Journal of Mathematics,, pages DOI : 10.1007/s40065-019-0247-7, 2019.

Modelling of Pancreatic Beta-cells with Gap-junction

Murat An 1, Vehbi Yıldırım ${ }^{2}$
${ }^{1}$ Basic Sciences, Faculty of Science, Erzurum Technical University, Erzurum, Turkey, murat.an@erzurum.edu.tr
${ }^{2}$ Mathematics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey, vehbi.yildirim@erzurum.edu.tr

Insulin is secreted from pancreatic beta-cells located on the islets of Langerhans in response to elevated plasma glucose concentrations. Pancreatic beta-cells are electrically excitable cells and insulin secretion results from this electrical activity. Insulin secretion from pancreas is oscillatory. Studies show that insulin oscillations have physiological importance, where systemic insulin oscillations increase the potency of the insulin signal. Furthermore, oscillatory insulin secretion is impaired in patients with type 2 diabetes and their close relatives. Oscillatory insulin secretion results from bursting electrical activity of pancreatic beta-cells and their intra- and inter-islet synchronization. The mechanism for intra-islet synchronization has not been identified yet but the inter-islet synchronization results from gap-junctional coupling between beta-cells within the same islet. Gap junctions on pancreatic beta-cell membranes are comprised of connexin36 (cx36) proteins. Studies show that impairments in the expression cx36 gene impairs oscillatory insulin secretion in animal models. In this study, we developed a computational model of a cluster of beta-cells, which are coupled through electrical currents that represent gap-junctional coupling. In the model, the dynamics of beta-cell electrophysiology is represented by a large system of non-linear differential equations. We investigate the role that cx36 plays in the coupling between pancreatic beta-cells. Through mathematical analysis, we explore the way the strength of the electric coupling between pancreatic beta-cells effects the progression of diabetes.
Keywords: nonlinear dynamics, mathematical modeling, electrophysiology, differential equations.

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

Some Density Properties in Bitopological Context

Necati Can AÇIKGÖZ ${ }^{1}$, Ceren Sultan ELMALI ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculcty of Science, Erzurum Technical University, Erzurum, Turkey, necatican.acikgoz@erzurum.edu.tr

Many of ones defined in classical topology are defined and still kept to be studying in Bitopological Spaces. A bitopological Space (or Bispace) is simply a set X endowed with two different topology like τ_{i} and τ_{j} and referred to as (X, τ_{i}, τ_{j}). In this sense, we introduce somewhere-density properties by using generalized open sets in bispaces and investigate the properties of them. We later construct set operators based upon this somewhere - density and give the relatios between them. Moreover, we characterize them in hyperspaces and construct a new filter and ideal with this types of somewhere dense sets. Finally, we give new separation axioms properties taking this somewhere dense sets into consideration.

Keywords: Bitopology, somewhere-density, hyperspaces 2020 Mathematics Subject Classification: 54E55.

References

[1] M.E. Abd El Monsef, S.N. El Deeb and R.A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1983) 77- 43590
[2] D. Andrijevic, On b-open sets, Matematicki Vesnik, 48 (1996) 59-64.
[3] T.M. Al-Shami, Somewhere dense sets and ST1-spaces, Punjab University Journal of Mathematics, 49(2) (2017) 101-111.
[4] T.M. Al-Shami, Soft somewhere dense sets on soft topological spaces, 440 Communications of the Korean Mathematical Society, 33(4) (2018) 1341-1356.
[5] T.M. Al-Shami, Improvement of the approximations and accuracy measure of a rough set using somewhere dense sets, Soft Computing, 25(23) (2021) 14449-14460.

On integral bases and monogeneity of certain pure number fields defined by $x^{p^{r}}-a$

Omar Kchit ${ }^{1}$, Hanan Choulli ${ }^{2}$, Lhoussain El Fadil ${ }^{3}$
${ }^{1}$ Department of mathematics, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed ben Abdellah University, Fez, Morocco, omar.kchit@usmba.ac.ma
${ }^{2}$ Department of mathematics, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed ben Abdellah University, Fez, Morocco, hanan.choulli@usmba.ac.ma
${ }^{3}$ Department of mathematics, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed ben Abdellah University, Fez, Morocco, lhoussain.elfadil@usmba.ac.ma

Let $K=\mathbb{Q}(\alpha)$ be a pure number field generated by a complex root α of a monic irreducible polynomial $x^{p^{r}}-a \in \mathbb{Z}[x]$, where p is a rational prime integer and r is a positive integer. Let \mathbb{Z}_{K} be the ring of integers of K. In this paper, we calculate an integral basis of \mathbb{Z}_{K} and we study the monogenity of K in some particular cases.

Keywords: Theorem of Dedekind, Theorem of Ore, prime ideal factorization, Newton polygon, Index of a number field, Power integral basis, Monogenic. 2020 Mathematics Subject Classification: 11R04, 11Y40, 11R21.

References

[1] Ben Yakou H and El Fadil L. On power integral bases for certain pure number fields defined by $x^{p^{r}}-m$ (To appear in a forthcoming issue of Intrantional Journal of Number theory).
[2] Ben Yakou H and Kchit O . On power integral bases for certain pure number fields defined by $x^{3^{r}}-m$. São Paulo Journal of Mathematics Sciences (2021). https://doi.org/10.1007/s40863-021-00251-2
[3] Cohen H. A Course in Computational Algebraic Number Theory. GTM 138, SpringerVerlag Berlin Heidelberg 1993.
[4] Dedekind R. Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen. Göttingen Abhandlungen, 23: 1-23, 1878.
[5] El Fadil L, Montes J, Nart N. Newton polygons and p-integral bases of quartic number fields. Journal of Algebra and Its Applications, 11(4): 1250073(33 pages), 2012.
[6] Funakura T. On integral bases of pure quartic fields. Mathematical journal of Okayama University 26: 27-41, 1984.
[7] Gaál I, Remete L. Power integral bases and monogeneity of pure fields. Journal of Number Theory, 173(7): 129-146, 2017.
[8] Guardia J, Montes J, Nart E. Newton polygons of higher order in algebraic number theory. Transactions of the American Mathematical Society, 364(1): 361-416, 2012.

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

[9] Hameed A, Nakahara T. Integral bases and relative monogeneity of pure octic fields. Bulletin mathématique de la Société des Sciences Mathématiques de Roumanie, 58(106) No. 4: 419-433, 2015.
[10] Jakhar A and Sangwan N. Integral Basis of Pure Prime Degree Number Fields. Indian Journal of Pure and Applied Mathematics, 50(2): 309-314, June 2019.
[11] Narkiewicz W. Elementary and Analytic Theory of Algebaric Numbers. Third Edition, Springer, 2004
[12] Neukirch J. Algebraic Number Theory. Springer-Verlag, Berlin, 1999.
[13] Ore O. Newtonsche Polygone in der Theorie der algebraischen Korper. Mathematische Annalen, 99(1): 84-117, 1928. doi: 10.1007/BF01459087
[14] Westlund J. On the fundamental number of the algebaric number field $k(\sqrt[p]{m})$. Transactions of the American Mathematical Society, 11: 388-392, 1910.

Mathematical Model of COVID-19 with Imperfect Vaccine and Virus Mutation

Ceren Gurbuz ${ }^{1}$, Sebaheddin Sevgin ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences, Van Yuzuncu Yil University, Van, Turkey, ceren.gurbuz@hotmail.com
${ }^{2}$ Department of MAthematics, Faculty of Sciences, Van Yuzuncu Yil University, Van, Turkey, ssevgin@yyu.edu.tr

This study examines the effect of a partially protective vaccine on COVID-19 infection with the original and mutant virus with the help of a deterministic mathematical model developed. The model we developed consists of six compartments and fifteen parameters. The model consists of S (susceptible $=$ susceptible $), V($ vaccinated $=$ vaccinated $), E($ exposed $=\operatorname{exposed}), I_{1}($ infected with original virus), I_{2} (infected with mutant virus) and R (recover $=$ recovered) subcompartments. With the established model, we examined the effect of defective vaccine and mutant virus on COVID-19. We considered the incubation period of the disease in the model. We achieved this by handling the E (exposed) class in the model. We examined the effect of both artificial active immunity (vaccinated) and natural active immunity (passing disease) in the model. Since it is known that the recovery and death rates of the original virus and the mutant virus are different in COVID-19, we considered this situation in the study. Then, we performed local stability analysis by calculating the disease-free equilibrium point and endemic equilibrium point of the model. We also obtained the basic reproduction number with the help of the next generation matrix method.
Keywords: $S V E I_{1} I_{2} R$ model, vaccine and mutation, stability, basic reproduction number, deterministic model.
2020 Mathematics Subject Classification: 92D30, 00A71, 34D20.

References

[1] C. Chavez F. Brauer. Mathematical Models in Population Biology and Epidemiology. Springer, New York, NY, 2010.
[2] C. N. Ngonghala E. H. Elbasha A. B. Gumel, E. A. Iboi. A primer on using mathematics to understand covid-19 dynamics: Modeling, analysis and simulations. Infectious Disease Modelling, 6:148-168, 2021.
[3] A. Kumar P. Harjule, V. Tiwari. Mathematical models to predict covid-19 outbreak: An interim review. Journal of Interdisciplinary Mathematics, 24(2):259-284, 2021.
[4] H. W. Hethcote. The mathematics of infectious diseases. SIAM, 2000.

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

[5] M. Y. Li. An introduction to mathematical modeling of infectious diseases. Springer, 2018.
[6] M. Martcheva. An introduction to mathematical epidemiology. Springer, 2015.
[7] R. Sameni. Mathematical modeling of epidemic diseases; a case study of the covid-19 coronavirus. arXiv preprint arXiv:2003.11371, 2020.
[8] L. Edelstein-Keshet L. A. Segel. A Primer in Mathematical Models in Biology, volume 129. Siam, 2013.
[9] R. White E. Vynnycky. An introduction to infectious disease modelling. OUP oxford, 2010.

Existence result of a Capacity Solution for a Nonlinear Parabolic-Elliptic System

Ibrahim DAHI ${ }^{1}$, Moulay Rchid SIDI AMMI ${ }^{2}$
Department of Mathematics, MAMCS Group, Faculty of Sciences and
Technology, Moulay Ismail University, B.P. 509, Errachidia, Morocco
${ }^{1}$ Department of Mathematics, MAMCS Group, Faculty of Sciences and Technology, Moulay
Ismail University, B.P. 509, Errachidia, Morocco i.dahi@edu.umi.ac.ma
${ }^{2}$ Department of Mathematics, MAMCS Group, Faculty of Sciences and Technology, Moulay Ismail University, B.P. 509, Errachidia, Morocco sidiammii@ua.pt

In this work, we study a much more general version of a thermistor problem than the one considered by Xu ; indeed, we assume that the diffusion function $a(x, t, u, \nabla u)$ depends also on u and define a Leray-Lions operator of order $p \geq 2$. Since capacity solutions are obtained by approximating techniques, the proof of the existence theorem relies on the introduction of a sequence of approximate problems. Then, it is shown that the sequence of solutions to these smooth problems converge (up to a subsequence) in a certain sense to a capacity solution. As a consequence, we get the existence and uniqueness of a capacity solution to a coupled nonlinear parabolic-ellipticin a Sobolev Lebesgue spaces.

Keywords: Thermistor problem, Sobolev Lebesgue spaces, Capacity solution. 2020 Mathematics Subject Classification: ..., 46E35, 31A15.

References

[1] J. Simon. Compact sets in the space $\operatorname{lp}(\mathrm{o}, \mathrm{t} ; \mathrm{b})$. Annali di Matematica Pura ed Applicata, 146:65-96, 1986.
[2] H. W. Alt and S. Luckhaus. Quasilinear elliptic-parabolic differential equations. Mathematische Zeitschrift, 183(3):311-341, 1983.
[3] D. Blanchard and G. A. Francfort. A few results on a class of degenerate parabolic equations. Annali Della Scuola Normale Superiore di Pisa-Classe di Scienze, 18(2):213249, 1991.
[4] R. Temam. Infinite-dimensional dynamical systems in mechanics and physics. Applied Mathematical Sciences, 68, 1988.
[5] X. Xu. A strongly degenerate system involving an equation of parabolic type and an equation of elliptic type. Communications in Partial Differential Equations, 18(1-2):199213, 1993.

Some fixed point theorems for a Generalized cyclic (α, f, ϕ, ψ)-contractive mapping in b-Metric-Like Spaces

MERAD SOUHEIB 1
${ }^{1}$ Laboratory of Mathematics, Informatics and systems (LAMIS), Larbi Tebessi University , Tebessa, Algeria. s.merad@univ-tebessa.dz

Our contribution of this work is to introduce a new type of generalized cyclic contractions using the concept of C-class functions in the context b-metric-like spaces. On the other hand, we prove a general fixed point theorem for mappings satisfying the cyclical contractive condition, which extends several results from the literature.
Keywords: -admissible mapping, C-function, cyclic contraction, fixed point, metric like spaces.
2020 Mathematics Subject Classification: MSC 47H10,54H25.

References

[1] M. A. Alghamdi, N. Hussain, and P. Salimi, îFixed point and coupled Öxed point theorems on b-metric-like spaces, Journal of Inequalities and Applications, vol. 2013, article 402, 2013.
[2] B. Samet, C. Vetro and P. Vetro, Fixed point theorems for $\alpha-\Psi$-contractivetype mappings, Nonlinear Anal., 75 (2012), 2154-2165.
[3] W.A. Kirk, P.S. Srinavasan and P. Veeramani, Fixed points for mapping satis fying cyclical contractive conditions, Fixed Point Thoery
[4] Hussain N, Roshan J R, Parvaneh V, Kadelburg Z,: Fixed points of contractive mappings in b-metric-like spaces. The Scientic World Journal, Vol. 2014, Article ID 471827 (2014).

Analyzing Neimark-Sacker Bifurcation and Stability for a Discrete-Time Prey- Predator Model with Allee Effect

Nihal Öztürk ${ }^{1}$, Figen Kangalgil ${ }^{2}$, Nilüfer Topsakal ${ }^{3}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences, Sivas Cumhuriyet University, Sivas, Turkey, e-mail: nihalozturk1729@gmail.com
${ }^{2}$ Department of Management and Organization, Bergama Vocational High School, Dokuz Eylül University, İzmir, Turkey, e-mail: figenkangalgil@gmail.com
${ }^{3}$ Department of Mathematics, Faculty of Sciences, Sivas Cumhuriyet University, Sivas, Turkey, e-mail: topsakaln@gmail.com

In nature, prey-predator relationship is a very important population phenomenon that occurs. In population dynamics, when the population density is very low, there is a positive correlation between the population unit growth rate and the popu lation density. This phenomenon has been called the Allee effect [1], since Allee's research [2]. Factors such as mating difficulty, mating depression, food problem, and protection from predator are considered as Allee effect. Analysis of systems involving Allee effect has gained lots of importance in problems associated with various fields such as conservation biology [3], sustainable harvesting [4], pest control, biological control [5], population management [6], biological invasions [7], interacting species [8]. Therefore, studies on Allee effect have received more and more attention from both mathematicians and ecologists.

In this study, a discrete time predator-prey model with Allee effect in prey population is considered. Using the Euler scheme method to the continuous model in [9], the discrete-time model has been obtained. Then, the existence of the fixed points and their topological classiffications are analyzed algebraically. Also, the direction of Neimark-Sacker bifurcation has been given. The OGY method has been applied in order to control chaos in considered model due to emergence of Neimark-Sacker bifurcation In addition the chaotic features have been justified numerically by computing Lyapunov exponents.

Keywords: Prey-predator model, Stability analysis, Fixed point, Allee effect, Neimark-Sacker bifurcation, chaos control
2020 Mathematics Subject Classification: 39A33, 37G35, 39A30.
[1] Courchamp, F., Clutton-Brock, T. and Grenfell, B. (1999), Inverse density dependence and the Allee effect, Trends in Ecology \& Evolution, 14(10), 405-410.
[2] Allee, W. C., (1931), Animal Aggregations: A study in General Sociology, University of Chicago Press, Illinois, Ill, USA.
[3] Stephens, P.A., Sutherland, WJ (1999) Consequences of the Allee effect for behavior, ecology and conservation. Trends Ecology \& Evolution 14(10), 401.405.
[4] Lin, Z.S., Li B.L., (2002) The maximum sustainable yield of Allee dynamic system. Ecol Model 154, 17-23
[5] Hopper, K.R., Roush, R.T. (1993) Mate .nding, dispersal, number released, and the success of biological-control introductions. Ecol Entomol 18, 321-331
[6] Berec, L., Angulo, E., Counchamp F., (2006) Multiple Allee exects and population management. Trends in Ecology \& Evolution 22(4), 185-191
[7] Caz, M.T., Hastings, A., (2005) Allee effects in biological invasions. Ecol Lett 8, 895-908
[8] David, S.B., Maurice, W.S., Berec, L (2007) How predator functional responses andAllee exects in prey affect the paradox of enrichment and population collapses. Theor Popul Biol 72, 136-147
[9] Selvam, A.G.M., Jacintha, M. and Dhineshbabu, R., (2019) Bifurcation Analysis and Chaotic Behaviour in Discrete .Time Predator-Prey System, International Journal of Computational Engineering Research (IJCER), 9(4), 01-09.

On the relationship between the degree of coefficients and the growth of solutions of ultrametric q-difference equations

Boughaba Houda ${ }^{1}$, Zerzaihi Tahar ${ }^{2}$
${ }^{1}$ Department of mathematics, Laboratoire de Mathématiques Pures et Appliquées(LMPA), University of Mohamed Seddik Ben Yahia, Jijel, Algeria, houdaboughaba5@gmail.com
${ }^{2}$ Department of mathematics, Laboratoire de Mathématiques Pures et Appliquées(LMPA), University of Mohamed Seddik Ben Yahia, Jijel, Algeria, zerzaihi@yahoo.com

Let \mathbb{K} be an algebraically closed field complete for an ultrametric absolute value. We denote by $\mathcal{M}(\mathbb{K})$ the field of meromorphic functions in \mathbb{K} and $\mathcal{A}(\mathbb{K})$ the \mathbb{K}-algebra of entire function in \mathbb{K}. By the ultrametric Nevanlinna theory, we investigate the growth of transcendantal meromorphic solutions of some ultrametric q-difference equations. These equations arise from the analogue study of q-difference equations of Schröder type, we give also somme characterizations of the order of growth for transcendantal meromorphic solutions of the following equation

$$
\begin{equation*}
\sum_{j=1}^{n} A_{j}(x) f\left(q^{j} x\right)=R(x, f(x))=\frac{\sum_{i=0}^{p} B_{i}(x) f(x)^{i}}{\sum_{i=0}^{t} C_{i}(x) f(x)^{i}} \tag{1}
\end{equation*}
$$

where $A_{0}(x), \ldots, A_{n}(x), B_{0}(x), B_{1}(x), \ldots, B_{p}(x), C_{0}(x), C_{1}(x), \ldots, C_{t}(x)$ are rational functions in all \mathbb{K} such that $B_{p}(x) C_{t}(x) \neq 0$, and $q \in \mathbb{K}$ such that $|q|>1$.
Keywords: The growth order, Ultrametric meromorphic function, Nevanlinna theory.
2020 Mathematics Subject Classification: 12J25, 32A22, 39A13.

References

[1] Hu Pei-Chu and Yang Chung-Chun. Meromorphic functions over non-Archimedean fields. Springer Science \& Business Media, 2000.
[2] A. Boutabaa N. Boudjrida and S. Madjrab. On some ultrametric q-difference equations. Bull. Sci. math, 137(2):177-188, 2013.
[3] Jacqueline Alejandra Ojeda Fuentealba. Distribution de valeurs des fonctions méromorphes ultramétriques, application de la thèorie de Nevanlinna. PhD thesis, Université Blaise Pascal-Clermont-Ferrand II, 2008.

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

Numerical Solution of simple mechanical systems with deep learning

Tayfun ÜNAL ${ }^{1,2}$, Ayten İrem IŞIK ${ }^{1}$, Ünver ÇİFTÇİ ${ }^{1}$
${ }^{1}$ Mathematics, The Faculty of Arts and Sciences, Tekirdağ Namık Kemal University, Tekirdağ, Turkey, tayfununal39@gmail.com, iremisik96@gmail.com, uciftci@nku.edu.tr
${ }^{2}$ Department of Information Technologies, Kırklareli University, Kırklareli, Turkey, tayfununal39@gmail.com

Ordinary differential equations that explain the time-dependent evolution of mechanical systems have been solved using deep learning methods[1]. We present a method to solve initial value problems using deep learning with energy preserved loss for simple mechanical systems. Numerical symplectic integral methods cannot conserve energy. Conversely, numerical methods conserving energy cannot preserve the symplectic structure[2]. For this, we first solve ODEs using symplectic Euler method. Here, we obtain a solution against time data to use in deep learning training. Namely, the symplectic Euler method is utilized to collect data points, which are then combined into a dataset. Then we improve the solution of the symplectic Euler method using deep learning with energy preserved loss for preserving energy on this dataset. In conclusion we have preserved both the symplectic structure and energy. Moreover, the obtained solution using deep learning is not discrete but continuous.
Keywords: Simple mechanical systems, deep learning, artificial neural networks, ODEs, supervised learning.
2020 Mathematics Subject Classification: 70H20, 37M15, 65Lxx, 65 Kxx .

References

[1] Marios Mattheakis, David Sondak, Akshunna S. Dogra, and Pavlos Protopapas. Hamiltonian neural networks for solving differential equations. ArXiv, abs/2001.11107, 2020.
[2] Ge Zhong and Jerrold E. Marsden. Lie-poisson hamilton-jacobi theory and lie-poisson integrators. Physics Letters A, 133:134-139, 1988.

Uniqueness of solution of an inverse problem for the ultrahyperbolic Schrödinger equation

Özlem Kaytmaz ${ }^{1}$
${ }^{1}$ Department of Mathematics, Zonguldak Bülent Ecevit University, Zonguldak, Turkey, ozlem.kaytmaz@beun.edu.tr

We consider an inverse problem for the ultrahyperbolic Schrödinger equation with variable coefficients. Ultrahyperbolic Schrödinger equations have important applications in [2, 12, 13]. We study the uniqueness of the solution of the problem. We obtain a pointwise Carleman inequality and then prove the uniqueness theorem by the method proposed in $[1,10]$. For this aim, we first reduce the inverse problem to a Cauchy problem for a system of integro-differential equations. Similar inverse problem for second order equations were studied in [9].

In the theory of inverse problems, Carleman estimates were firstly introduced by A. L. Bukhgeim and M. V. Klibanov in [4]. Inverse problems for ultrahyperbolic equations were considered in $[1,10]$, where the unique continuation and stability were proved by using the Carleman estimates. Gölgeleyen and Yamamoto [6] proved conditional Hölder stability for some inverse problems for ultrahyperbolic equation.

For the classical Schrödinger equation, Baudouin and Puel in [11] established a global Carleman estimate and proved the uniqueness and Lipschitz stability. We also refer [3, 8]. On the other hand, there have been limited number of studies on direct and inverse problems for the ultrahyperbolic Schrödinger equation. The Cauchy problem was considered in [5] and and an inverse problem was studied in [7].

Keywords: Ultrahyperbolic Schrödinger equation, inverse problem, uniqueness theorem, pointwise Carleman inequality.
2020 Mathematics Subject Classification: 35Q40, 35Q41, 35R45.

References

[1] A. Amirov, Integral Geometry and Inverse Problem for Kinetik Equations. VSP, Utrecht The Netherlands, 2001.
[2] A. Davey, K. Stewartson, On three-dimensional packets of surface waves, Procceedings of the Royal Society of London A: Physical and Engineering Sciences, 338, 101-110, 1974.
[3] A. Mercado, A. Osses and L. Rosier, Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights, Inverse Problem, 24, 015017, 2008.
[4] A. L. Bukhgeim and M. V. Klibanov, Global uniqueness of a class of inverse problems. Doklady Akademii Nauk SSSR, 260(2), 269-272, 1981.
[5] İ. Gölgeleyen and Ö. Kaytmaz, Conditional stability for Cauchy problem for the ultrahyperbolic Schrödinger equation. Applicable Analysis, 1-12, 2020.
[6] F. Gölgeleyen and M. Yamamoto, Stability of inverse problems for ultrahyperbolic equations. Chinese Annals of Mathematics, Series B, 35(4), 527-556, 2014.
[7] F. Gölgeleyen and Ö. Kaytmaz, A Hölder stability estimate for inverse problems for the ultrahyperbolic Schrödinger equation. Analysis and Mathematical Physics, 1-29, 2019.
[8] G. Yuan and M. Yamamoto, Carleman estimates for the Schrödinger equation and applications to an inverse problem and an observability inequality, Chinese Annals of Mathematics, Series B, 31(4), 555-578, 2010.
[9] M. V. Klibanov and A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications. VSP,

Utrecht The Netherlands, 2004.
[10] M. M. Lavrentiev, V. G. Romanov and S. P. Shishatskii, Ill-Posed Problems of Mathematical Physics and Analysis. AMS, Providence, 1986.
[11] L. Baudouin and J. P. Puel, Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Problem, 18, 1537, 2002.
[12] M. J. Ablowitz and R. Haberman, Nonlinear evolution equations in two and three dimensions, Physical Review Letters, 35, 1185, 1975.
[13] V. E. Zakharov and E. A. Kuznetsov, Multi-scale expansions in the theory of systems integrable by the inverse scattering transform, Physica D: Nonlinear Phenomena, 18, 455-463, 1986.

Complexity analysis of a primal-dual interior-point method for convex quadratic optimization based on a new hyperbolic kernel function

Youssra Bouhenache ${ }^{1}$, Wided Chikouche ${ }^{2}$, Imene Touil ${ }^{3}$
${ }^{1}$ Department of Mathematics, Faculty of Exact Sciences and Informatics, Mohamed Seddik Ben Yahia University, Jijel, Algeria, youssrabouhenache1997@gmail.com
${ }^{2}$ Department of Mathematics, Faculty of Exact Sciences and Informatics, Mohamed Seddik Ben Yahia University, Jijel, Algeria, w_chikouche@yahoo.com
${ }^{3}$ Department of Mathematics, Faculty of Exact Sciences and Informatics, Mohamed Seddik Ben Yahia University, Jijel, Algeria, i_touil@yahoo.fr

Abstract

. Kernel functions play an important role in defining new search directions and analysis of primal-dual interior-point algorithms for convex quadratic optimization problems. In this work, we consider a primal-dual interior-point method for solving convex quadratic optimization problems based on a new kernel function with a hyperbolic barrier term. The iteration complexity of the algorithm is evaluated by using some simple analysis tools and several properties of this kernel function, we prove that our algorithm has $\mathbf{O}\left(\sqrt{n} \log n \log \frac{n}{\epsilon}\right)$ iteration bound for large-update method, which is the best-known complexity bound. Finally, we present some concluding remarks and suggestions for future work.

Keywords: Convex quadratic optimization, Hyperbolic barrier term, Large-update method.
2020 Mathematics Subject Classification: 90C20, 90C25, 90C51.

References

[1] W.Chikouche I.Touil. Novel kernel function with a hyperbolic barrier term to primaldual interior point algorithm for sdp problems. Acta Mathematicae Applicatae Sinca, 38(1):44-67, 2022.
[2] M.A. Oleksandr Romanko, B.Sc. An interior point approach to quadratic and parametric quadratic optimizationt. Master's thesis, McMaster University, Hamilton, Ontario, August 2004.

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

Examining the perceptions of anatolian vocational high school students on mathematics through metaphors

Ömer DEMİRCI ${ }^{1}$, Özlem DEMİRCí ${ }^{2}$
${ }^{1}$ Department of Basic Education, Faculty of Education, Erzincan Binali Yıldırım University, Erzincan, Türkiye, omer.demirci@erzincan.edu.tr
${ }^{2}$ Gül-Celal Toraman Vocational and Technical Anatolian High School, Ministry of National Education, Erzincan, Türkiye, demirciozlm24@gmail.com

Based on the idea that the main purpose of mathematics is to produce solutions to problems encountered in real life through critical thinking, establishing relationships and reasoning [1], it can be stated that people should use mathematics effectively in order to continue their lives [2]. The basis of being able to use mathematics is to be able to learn mathematics [3]. In this context, it is thought that perceptions about mathematics have a significant effect on learning mathematics [4]. Metaphors are the most effective tool in examining people's perceptions [5]. Based on this idea, the main purpose of the research is to reveal the perceptions of students studying at Anatolian vocational high schools about mathematics through metaphors. The participants of the research are 60 students studying in the 10th and 11th grades of an Anatolian Vocational High School located in the city center of Erzincan in the fall semester of the 2020-2021 academic year. In order to determine the perceptions of the participants about mathematics within the scope of the research, they were asked to complete the sentence "Mathematics is like. \qquad ; Because \qquad .." with appropriate expressions. The research was carried out with the case study, which is one of the qualitative research methods. The data obtained in the research were analyzed by content analysis and interpreted using descriptive statistics. Based on the findings of the study, it was determined that students' perceptions of mathematics were generally positive, and that they saw mathematics as a necessity for the continuation of life and valued mathematics. In other words, the students demonstrated that In addition, although mathematics is a need for students, it has been determined that students associate with complex and difficult concepts and produce metaphors for this. Keywords: Mathematics, metaphor, high school students.
Keywords: Keyword one, keyword two, keyword three.
2020 Mathematics Subject Classification: First, Second, Third.

References

[1] A. Umay. Mathematical reasoning ability. Hacettepe University Journal of Education, 24: 234-243, 2003.
[2] Ö. Demirci. An Investigation of the Development of Pre-service Mathematics Teachers' Problem Posing Skills in Probability. PhD thesis, Atatürk University, Erzurum, Türkiye, 2018
[3] National Council of Teachers of Mathematics [NCTM]. Principles and standards for school mathematics. NCTM, VA Reston, 2000.
[4] J. A. Van de Walle, K. S. Karp, and J. M. Bay-Williams. Elementary and middle school mathematics: Teaching developmentally. Pearson, NJ Upper Saddle River, 2013.
[5] I. M. Yob. Thinking constructively with metaphors. Studies in Philosophy and Education, 22(2): 127-138, 2003.

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

Relative cohomology spaces for some $\mathfrak{o s p}(n \mid 2)$-modules.

Wafa Mtaouaa ${ }^{1}$, Didier Arnal ${ }^{2}$, Mabrouk Ben Ammar ${ }^{3}$, Zeineb Selmi ${ }^{4}$
${ }^{1}$ Laboratoire Algèbre, Géométrie et Théorie Spectrale (AGTS), LR11ES53 Faculté des Sciences de Sfax, Université de Sfax, Route de Soukra, km 3,5, B.P. 1171, 3000 Sfax, Tunisie, mtawaa.wafa@yahoo.fr
${ }^{2}$,Institut de Mathématiques de Bourgogne, UMR CNRS 5584, U.F.R. Sciences et Techniques B.P. 47870 Université de Bourgogne Franche Comté F-21078 Dijon Cedex, France Didier.Arnal@u-bourgogne.fr
${ }^{3}$, Laboratoire Algèbre, Géométrie et Théorie Spectrale (AGTS), LR11ES53 Faculté des Sciences de Sfax, Université de Sfax, Route de Soukra, km 3,5, B.P. 1171, 3000 Sfax, Tunisie, mabrouk.benammar@fss.rnu.tn
${ }^{3}$, Laboratoire Algèbre, Géométrie et Théorie Spectrale (AGTS), LR11ES53 Faculté des Sciences de Sfax, Université de Sfax, Route de Soukra, km 3,5, B.P. 1171, 3000 Sfax, Tunisie, selmizaineb@live.com

In this work, we describe the spaces $\mathrm{H}^{k}(\mathfrak{o s p}(n \mid 2), \mathfrak{s o}(n), M)$ for a natural class of $\mathfrak{o s p}(n \mid 2)$-modules M, and for $n \neq 2$. The Lie superalgebra $\mathfrak{o s p}(n \mid 2)$ can be realized as a superalgebra of vector fields on the superline $\mathbb{R}^{1 \mid n}$, this yields to canonical actions on spaces of densities and differential operators on the superline. This result gives the zero, first and second cohomology spaces for these modules of densities and differential operators.

Keywords:Orthosymplectic superalgebras, Modules of differential operators, Cohomologies.
2020 Mathematics Subject Classification: 17B56, 53D55, 58A50, 58H15.

References

[1] Ben Ammar M. Dali B. Arnal, D. The spaces $h^{n}(\mathfrak{o s p}(1 \mid 2), m)$ for some modules m. J. Math. Phys., 51 (2010),.
[2] C.H. Conley. Conformal symbols and the action of contact vector fields over the superline. J. Reine Angew. Math., 633 (2009), 115-163.
[3] W. Fulton and J. Harris. Representation theory ,. Readings in Mathematics 129, 1991 Springer-Verlag, New York.
[4] N. Jacobson. Lie algebras. Interscience Tracts in Pure and Applied Mathematics, No. 10, New York-London 1962.
[5] V.G. Kac. Representations of classical lie superalgebras 197 597-626. Lecture Note in Math., Springer, Berlin,, K.
[6] C. Kassel. Quantum groups. Graduate Texts in Mathematics, 155. Springer-Verlag, New York, 1995.
[7] A. Rogers. Supermanifolds: theory and applications. World Scientific, 2007.

FIXED-POINT THEOREMS IN EXTENDED FUZZY METRIC SPACES VIA SOME FUZZY CONTRACTIVE MAPPINGS

MERYEM SENOCAK ${ }^{1}$, ERDAL GÜNER ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences, Ankara University, 06100 Ankara, TURKEY, https://orcid.org/0000-0002-2988-9419 meryemsnck@gmail.com
${ }^{2}$ Department of Mathematics, Faculty of Sciences, Ankara University, 06100 Ankara, TURKEY, https://orcid.org/0000-0002-2988-9419 guner@science.ankara.edu.tr

In this article we would like to present a new type of fuzzy contractive mappings which are called $\alpha-\phi-\mathcal{M}^{0}$ fuzzy contractive and $\beta-\psi-\mathcal{M}^{0}$ fuzzy contractive, and then we demonstrate two theorems which ensure the existence of a fixed point for these two types of mappings. And so we combine and generalize some existing notions in the literature ([5], [7]). Proved these theorems in the extended fuzzy metric spaces are in the more general version than the existing in the literature ones. In fact, we define new notions which are generalized versions of fuzzy contractive mappings introduced by D. Gopal and C.Vetro [5]. We study these contractions in extended fuzzy metric spaces introduced by V. Gregori et al.[7].
Keywords: Fixed-point; Extended fuzzy metric space, Fuzzy contractive mapping.
2020 Mathematics Subject Classification: 47H10, 03E72, 54E50, 54H25,

References

[1] Banach, S., Sur les oprations dans les ensembles abstrails et leur application aux quations intgrales, Fund Math., vol. 3 (1922), 133-181.
[2] Chang, C., L., Fuzzy topological spaces, Journal of Mathematical Analysis and Applications. 24, (1968), $182-190$
[3] Di Bari, C., Vetro, C., Fixed points, attractors and weak fuzzy contractive mappings in a fuzzy metric space, J. Fuzzy Math., 13(4), (2005), 973-982.
[4] George, A., Veeramani, P., On some results in fuzzy metric spaces, Fuzzy Sets and Systems. 64, (1994), 395 - 399.
[5] Gopal, D. and Vetro, C., Some new fixed point theorems in fuzzy metric spaces, Iranian Journal of Fuzzy Systems, Vol.11, No.3, (2014), 95-107.
[6] Grabiec, M., Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27, (1988), 385-389.
[7] Gregori, V., Minana, J. J. and Miravet, D., Extended fuzzy metrics and fixed point theorems, Mathematics Journal, 7, (2019), 303.
[8] Gregori, V., Romaguera, S., Characterizing completable fuzzy metric spaces, Fuzzy Sets and Systems, 144, (2014), 411-420.

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

[9] Gregori,V., Sapena, A., On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 125, (2002), 245-252.
[10] Gregori, V., Minana, J. J. and Morillas, S., A Note On Convergence in Fuzzy Metric Spaces, Iranian Journal of Fuzzy Systems, 11,(2014), 75-85.
[11] Huang, H., Caric, B., Dosenovic, T., Rakic, D. and Brdar, M., Fixed point theorems in fuzzy metric spaces via fuzzy F-contraction, Mathematics Journal, 9, (2021), 641
[12] Khan, M. S., Swaleh, M. and Sessa, S., Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc. 30, (1984), 1-9.
[13] Kramosil, I., Michalek, J., Fuzzy metrics and statistical metric spaces, Kybernetika, 11, (1975), $336-344$.
[14] Mihet, D., Fuzzy ψ - contractive mappings in non-Archimedean fuzzy metric space, Fuzzy Sets and Systems, 159, (2008), 739-744. 10.
[15] Mihet, D., A note on fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Set. Syst. 251, (2014), $83-91.16$
[16] Park, J. S., Kim, S. Y., A fixed point theorem in a fuzzy metric space, F. J. M. S., 1(6), (1999), 927 - 934.
[17] Samet, B. Vetro, C. Vetro, P., Fixed point theorems for $\alpha-\psi$ contractive type mappings, Nonlinear Analysis Theory, Methods and Applications, 75, (2012), 2154-2165.
[18] Schwizer, B., Sklar, A., Statistical metric spaces, Pacific Journal of Mathematics 10, (1960), 315-367.
[19] Shen, Y., Qiu, D., Chen, W., Fixed point theorems in fuzzy metric spaces, App.Mathematics Letters, 25, (2012), 138-141.
[20] Zadeh, L.A., Fuzzy sets, Inform. Control, 8, (1965), 338-353

Solvability of an Inverse Problem for a Kinetic Equation on a Riemannian Manifold

İsmet Gölgeleyen ${ }^{1}$
${ }^{1}$ Department of Mathematics, Zonguldak Bülent Ecevit University, Zonguldak, Türkiye, ismet.golgeleyen@beun.edu.tr

We consider an inverse problem for a kinetic equation on a Riemannian manifold. Kinetic equations can be used to model a variety of phenomena in different areas, ranging from rarefied gas dynamics and plasma physics to biology and socio-economy, [3].

Solvability of inverse problems for the kinetic equation was studied in [1, 2]. As for the numerical algorithms we refer [4,5]. The physical meaning of these problems consists in finding particle interaction forces, scattering indicatrices, radiation sources and other physical quantities. Moreover, they are closely interrelated with the integral geometry problems. Namely, many problems of integral geometry are equivalent to the corresponding inverse problems for kinetic equations, and vice versa.

In this work, we investigate the uniqueness of solution of the inverse problem. By using the Fourier analysis, we first reduce the problem to a Cauchy problem for a system of equations. Then, in the Riemannian Coordinates, we prove our main result.

Keywords: Kinetic equation, inverse problem, solvability. 2020 Mathematics Subject Classification: 35A02, 35R10, 82B40.

References
[1] AK. Amirov, Integral Geometry and Inverse Problems for Kinetic Equations. VSP, Utrecht The Netherlands, 2001.
[2] Yu. E. Anikonov, Inverse Problems for Kinetic and Other Evolution Equations. VSP, Utrecht, The Netherlands, 2001.
[3] G. Dimarco and L. Pareschi, Numerical methods for kinetic equations. Acta Numerica, 23, 369-520, 2014.
[4] M. Yidiz, I. Gölgeleyen and B. Heydarov, Approximate solution of an inverse problem for a non-stationary general kinetic equation. Computer Modeling in Engineering and Sciences, 62(3), 255-264, 2010.
[5] F. Golgeleyen and A. Amirov, On the approximate solution of a coefficient inverse problem for the kinetic equation. Mathematical Communications, 16(1), 283-298, 2011.

A finite difference method based on the operator for the numerical solution of an inverse source problem backward in time

Ali Ugur Sazaklioglu ${ }^{1}$
${ }^{1}$ Department of Astronautical Engineering, Faculty of Aeronautics and Astronautics, University of Turkish Aeronautical Association, Ankara, Turkey, ausazaklioglu@thk.edu.tr

In this study, we deal with the abstract inverse source problem governed by a linear differential equation backward in time

$$
\left\{\begin{array}{l}
\frac{d u}{d t}-\mathscr{A} u=p+f(t), t \in(0,1) \tag{1}\\
u(1)=\psi, u\left(T_{1}\right)=\varphi, T_{1} \in[0,1)
\end{array}\right.
$$

in a Banach space E. Here, $(u(t), p)$ is the solution pair of the given problem, and \mathscr{A} is a linear operator such that $-\mathscr{A}$ is the generator of the analytic semigroup $\exp \{-t \mathscr{A}\}$ associated with an exponentially decreasing norm. Note that when $T_{1} \in(0,1)$, problem (1) becomes an inverse problem of simultaneous recovery of the source p and the initial condition $u(0)$.

In paper [1, Remark 3.2], the well-posedness of abstract inverse source problem (1) was presented. On the other hand, a first order of accuracy explicit difference scheme was proposed in paper [2] for the numerical solution of this problem. The main aims of this study are to propose a finite difference method based on the operator \mathscr{A} for the numerical solution of problem (1), and to give a mathematical and numerical analysis to the method proposed.

Considering some particular forms of the operator \mathscr{A} in proper spaces, the difference scheme proposed for problem (1) and the results obtained for that are extended to some difference schemes for some inverse source problems governed by linear parabolic equations backward in time. Furthermore, an elaborate numerical analysis is carried out by performing the method proposed on several test problems.
Keywords: Inverse problem, numerical solution, stability.
2020 Mathematics Subject Classification: 65J22, 65M32, 65N21.

References

[1] A. Ashyralyev. On the problem of determining the parameter of a parabolic equation. Ukrainian Mathematical Journal, 62(9):1397-1408, 2011.
[2] Ali Ugur Sazaklioglu. On the numerical solutions of some identification problems for oneand multidimensional parabolic equations backward in time. Submitted.

Groups whose proper subgroups of infinite rank are hypercentral-by-finite

Amel Dilmi ${ }^{1}$, Nadir Trabelsi ${ }^{2}$
$1{ }^{2}$ Department of Mathematics, Faculty of Sciences, University Ferhat Abbas Setif 1, Setif, Algeria, adilmi@univ-setif.dz, ntrabelsi@univ-setif.dz

A group G is said to be of finite rank r if every finitely generated subgroup of G can be generated by at most r elements, and r is the least positive integer with a such property. If there is no a such r, then the group G is said to be of infinite rank. In recent years, many authors studied the structure of locally (soluble-by-finite) groups G of infinite rank in which every proper subgroup of infinite rank belongs to a given class \mathfrak{Y} and they proved that all proper subgroups of G belong to \mathfrak{Y}, sometimes the group G itself belongs to \mathfrak{Y} (see for instance, [1] and [2]). In particular, it is proved in [2, Theorem B'], that an \mathfrak{X}-group of infinite rank whose proper subgroups of infinite rank are locally nilpotent is itself locally nilpotent, where \mathfrak{X} is the class introduced in [3] as the class obtained by taking the closure of the class of periodic locally graded groups by the closure operations \dot{P}, \grave{P}, and L. Clearly \mathfrak{X} is a subclass of the class of locally graded groups that contains all locally (soluble-by-finite) groups and which is R-closed. Recall that a group is said to be locally graded if every non-trivial finitely generated subgroup contains a proper subgroup of finite index. In [3], it is proved that an \mathfrak{X}-group of finite rank is almost locally soluble. Using [2, Theorem $\left.\mathrm{B}^{\prime}\right]$ and the fact that locally nilpotent groups of finite rank are hypercentral, one can see that an \mathfrak{X}-group of infinite rank whose proper subgroups of infinite rank are hypercentral has all its proper subgroups hypercentral. In the present work, we consider this problem for the class of hypercentral-by-finite groups and we prove that if G is an \mathfrak{X}-group of infinite rank whose proper subgroups of infinite rank are hypercentral-by-finite groups, then so are all proper subgroups of G.

Keywords: hypercentral-by-finite, Locally (soluble-by-finite), rank.
2020 Mathematics Subject Classification: 20F19; 20F99.

References

[1] de Giovanni F and Saccomanno F. A note on groups of infinite rank whose proper subgroups are abelian-by-finite. Colloquium Mathematicum, 137(2):165-170, 2014.
[2] M. R. Dixon, M. J. Evans, and H. Smith. Locally(soluble-by-finite) groups with all proper non-nilpotent subgroups of finite rank. J. Pure Appl. Algebra, 135:33-43, 1999.
[3] N. S. Černikov. A theorem on groups of finite special rank. J. Ukrain. Math, 42:855-861, 1990.

Examination of Mathematics Questions in Secondary Education Transition Exam According to Revised Bloom Taxonomy and Middle School Mathematics Curriculum Objectives

Zeynep Büşra ÜZÜMCÜ ${ }^{1}$,Ali Sabri İPEK ${ }^{2}$
${ }^{1}$ Matematik Öğretmeni, Pazar İmam Hatip Ortaokulu, Milli Eğitim Bakanlığı, Türkiye,
${ }^{2}$ Matematik ve Fen Bilimleri Eğitimi Bölümü, Eğitim Fakültesi, Recep Tayyip Erdoğan Üniversitesi,Rize, Türkiye,

In the study, it is aimed to determine the relationship between the mathematics questions asked in the secondary education transition examination (STE) and the 8th grade objectives of the middle education mathematics curriculum and to reveal the level of cognitive processes measured according to the revised Bloom taxonomy with the questions. Within the scope of the study, 20 mathematics questions in the 2021 STE and 52 objectives in the 8th grade based on the formation of these questions [1] were analyzed by document analysis, one of the qualitative research methods. The questions and objectives were classified independently by two researchers; descriptive statistics were used in the analysis of the data. While the 2021 STE mathematics questions are operational and metacognitive according to the knowledge dimension of the revised Bloom taxonomy, it has been determined that the 8th grade objectives in mathematics, which are based on the formation of these questions, are factual, conceptual and operational. However, it was concluded that the majority of the 2021 STE mathematics questions measure the cognitive processes in the application and analysis levels in the cognitive dimension of the revised Bloom taxonomy, while the 8th grade mathematics objectives are centered on the understanding and application levels.
Keywords:Mathematics questions in secondary education transition exam, Revised Bloom taxonomy, Middle school mathematics curriculum objectives.

References

[1] Milli Eğitim Bakanlığı (2018). Matematik dersi öğretim programı (İlkokul ve ortaokul 1, 2, 3, 4, 5, 6, 7 ve 8. Sinıflar). Ankara: MEB Yayınları. Ankara: MEB Yayınları.

Generalized Spherical Fuzzy Hamacher Aggregation Operators

Elif Güner ${ }^{1}$, Halis Aygün ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Arts and Science, Kocaeli, Turkey, elif.guner@kocaeli.edu.tr
${ }^{2}$ Department of Mathematics, Faculty of Arts and Science, Kocaeli, Turkey, halis@kocaeli.edu.tr

The aggregation functions have become a significant area of research in recent studies. Motivation for the importance of this topic is given by the fact that the necessity of merging the information contained in a collection of pieces of information into a single one, especially in applied sciences. In this study, we first define some algebraic operations based on Hamacher's t-norm and tconorm in the generalized spherical fuzzy environment and study some fundamental properties. Then we define some generalized spherical fuzzy Hamacher aggregation operators such as generalized spherical fuzzy Hamacher (ordered) weighted averaging (GSHWA/GSHOWA), generalized spherical fuzzy Hamacher hybrid weighted averaging (GSHHWA), generalized spherical fuzzy Hamacher (ordered) weighted geometric (GSHWG/GSHOWG) and generalized spherical fuzzy Hamacher hybrid weighted geometric (GSHHWG) operators. We also show the relationships between all defined operators. Finally, we establish a model for these aggregation operators to find the best solution for the multiple attribute group decision-making problems.

Keywords: Aggregation operators, Hamacher operations, generalized spherical fuzzy set, multi-criteria group decision-making.
2020 Mathematics Subject Classification: 03B52, 90B50, 91B06.
References
[1] S. Ashraf, S. Abdullah. Spherical aggregation operators and their application in multiattribute group decision-making. International Journal of Intelligent Systems, 34(3): 493-523, 2019.
[2] S. Ashraf, S. Abdullah, T. Mahmood, F. Ghani, T. Mahmood. Spherical fuzzy sets and their applications in multi- attribute decision making problems. Journal of Intelligent and Fuzzy Systems, 36(3): 2829-2844, 2019.
[3] S. Ashraf, T. Mahmood, S. Abdullah, Q. Khan. Picture fuzzy linguistic sets and their applications for multi-attribute group. Nucleus, 55(2): 66-73, 2018.
[4] S. Ashraf, S. Abdullah, T. Mahmood. Spherical fuzzy Dombi aggregation operators and their application in group decision making problems. Journal of Ambient Intelligence and Humanized Computing, 11: 2731-2749, 2020.

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

[5] K. T. Atanassov. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1): 87-96, 1986.
[6] B. Cuong. Picture fuzzy sets-first results. Seminar on neurofuzzy systems with applications Institute of Mathematics, Hanoi, 2013.
[7] E. Güner, H. Ayg"un. Generalized spherical fuzzy Einstein aggregation operatos: Application to multi-criteria group decision-making problems. Conference Proceedings of Science and Technology, 3(2): 27-235, 2020.
[8] E. Güner, B. Aldemir, E. Aydoğdu, H. Ayg"un. Spherical fuzzy sets: AHP-COPRAS method based on Hamacher aggregation operators, submitted.
[9] E. Güner, H. Aygün. Spherical fuzzy soft sets: Theory and aggregation operator with its applications. Iranian Journal of Fuzzy Systems, 19(2): 83-97, 2022.
[10] E. Güner, H. Aygün. A comparative study on the generalized spherical fuzzy Einstein aggregation operators, submitted.
[11] T. S. Haque, A. Chakraborty, S. P. Mondal, S. Alam. Approach to solve multi-criteria group decision-making problems by exponential operational law in generalized spherical fuzzy environment. CAAI Transactions on Intelligence Technology, 5(2): 106-114, 2020.
[12] T. S. Haque, S. Alam, A. Chakraborty. Selection of most effective COVID-19 virus protector using a novel MCGDM technique under linguistic generalised spherical fuzzy environment. Computational and Applied Mathematics, 41(2): 1-23, 2022.
[13] Y. Jin, S. Ashraf, S. Abdullah. Spherical fuzzy logarithmic aggregation operators based on entropy and their application in decision support systems. Entropy, 21(7): 628, 2019.
[14] F. Kutlu Gündoğdu, C. Kahraman. Spherical fuzzy sets and spherical fuzzy TOPSIS method. Journal of Intelligent and Fuzzy Systems, 36(1): 337352, 2019.
[15] F. Kutlu Gndodu, C. Kahraman. A novel VIKOR method using spherical fuzzy sets and its application to warehouse site selection. Journal of Intelligent and Fuzzy Systems, 37(1): 1197-1211, 2019.
[16] F. Kutlu Gndodu, C. Kahraman. Extension of WASPAS with spherical fuzzy sets. Informatica, 30(2), 269-292, 2019.
[17] P. F. A. Perveen, J. J. Sunil, K. Babitha, H. Garg. Spherical fuzzy soft sets and its applications in decision-making problems. Journal of Intelligent and Fuzzy Systems, 37(6): 8237-8250, 2019.
[18] G. Wei. Picture fuzzy aggregation operators and their application to multiple attribute decision making. Journal of Intelligent and Fuzzy Systems, 33(2): 713-724, 2017.
[19] G. Wei. Picture fuzzy Hamacher aggregation operators and their application to multiple attribute decision making. Fundamenta Informaticae, 157(3): 271-320, 2018.
[20] R. R. Yager. Pythagorean fuzzy subsets. Proceedings of Joint IFSA World Congress and NAFIPS Annual Meeting, Edmonton, Canada, 57-61, 2013.
[21] L. A. Zadeh. Fuzzy sets. Information and Control, 8: 338-353, 1965.

Inquiry-Based Learning: A Bibliometric Analysis

Seher ASLANCI ${ }^{1}$
${ }^{1}$ Department of Mathematics and Science Education, Faculty of Education, Alanya Alaaddin Keykubat University, Antalya, Turkey, seher.aslanci@alanya.edu.tr

The aim of this study is to analyze 618 articles in the Scopus database between 1990-2019 in the field of inquiry-based learning with the bibliometric analysis method. In this context, using the key concept of "inquiry-based learning" in Scopus databases, all relevant data were taken from the Scopus database, various analyzes were carried out with the R-Studio program, and all bibliometric data of the studies were reached. As a result of the analyzes, the number of articles for the years with the specified boundaries, the annual average number of citations, the most published journals and prominent authors, the citation burst values of the authors, the countries and collaborations of the responsible authors, the most cited articles, word cloud and word tree structures In addition, common citation and cooperation networks were examined under the sub-titles. According to the results obtained, it can be said that the interest in the subject area has increased after 2009. It was determined that most of the articles were published in the journal named PRIMUS, and the authors who made the most studies were B. Panijpan and P. Ruenwongsa. It was determined that the most cited study was the article written by Schraw, Crippen, and Hartley in 2006. It has been determined that the countries most open to cooperation in the articles written are Germany and Finland, and the most used words in the summary and keyword analyzes of the studies are "education", "learning" and "students". In the light of the results obtained, it is believed that this study will guide researchers focused on inquiry-based learning.
Keywords: Inquiry-based learning, bibliometric analysis, R-Studio.

References

[1] H. Y. Atar and B. Atar. Investigating the multilevel effects of several variables on turkish students' science achievements on timss. Journal of Baltic Science Education, 11(2):115126, 2012.
[2] S. D. Özgür and A. Yılmaz. The effect of inquiry-based learning on gifted and talented students' understanding of acids-bases concepts and motivation. Journal of Baltic Science Education, 16(6):994-1008, 2017.

Homotopy and Descriptive Homotopy in Computational Proximity

Tane Vergili ${ }^{1}$, James Francis Peters ${ }^{2}$
${ }^{1}$ Departments of Mathematics, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey, tane.vergili@ktu.edu.tr
${ }^{2}$ Computational Intelligence Laboratory, Department of Electrical \& Computer Engineering, University of Manitoba, Canada and Department of Mathematics, Faculty of Arts and Sciences, Adiyaman University, Adiyaman, Turkey james.peters3@umanitoba.ca

Computational proximity provides a framework useful in studying and analyzing digital images or video frames. We consider a digital image as a collection of vertexes and endow it with a Cech-like nearness relation on the collection of its subsets, which results in a structured set denoted by a pair (X, δ). This nearness relation provides some certain properties in such a way as to characterize the similarity of subsets by looking at either their spatially nearness or descriptively nearness. This facilitates the investigation of subsets of X that are either close to or apart from each other. To benefit from combinatorial objects in topology, one can also consider and adapt the traditional forms of algebraic topology [1] to the computational proximity. One tool is a (descriptive) proximal homotopy which is a family of (descriptive) proximally continuous maps parametrized by the unit interval [2]. Then computational proximity together with topology are useful in detecting, analyzing and clustering triangulated single video frame image shapes as well as comparing and contrasting shapes in sequences of triangulated video frames. This talk will be based on proximal homotopy and applications in computational proximity.
Keywords: Combinatorial Homotopy, Proximity, Shape, Video Frame. 2020 Mathematics Subject Classification: 54E05, 55P57.

References

[1] James R. Munkres. Elements of Algebraic Topology, 2nd Ed. Perseus Publishing, Cambridge, MA., 1984.
[2] James F. Peters and Tane Vergili. Good coverings of proximal Alexandrov spaces. Path cycles in the extension of the Mitsuishi-Yamaguchi good covering and Jordan Curve theorems. Submitted.

Examination of Preservice Mathematics Teachers' Written Expression Skills for Geometric Objects: Student Diaries

Pakize ÇETİN ${ }^{1}$, Okan KUZU ${ }^{2}$,
${ }^{1}$ Department of Mathematics and Science Education, Graduate School of Sciences, Kırşehir
Ahi Evran University, Kırşehir, Turkey, pitacetin@gmail.com
${ }^{2}$ Department of Mathematics and Science Education, Faculty of Education, Kırşehir Ahi
Evran University, Kırşehir, Turkey, okan.kuzu@ahievran.edu.tr

Developed countries have seen student diaries as a means of making written communication a part of mathematics learning, describing mathematical ideas, clarifying the areas that need improvement and developing positive attitudes towards mathematics [1]. The written expression skills of preservice mathematics teachers on the subject of geometric objects within the scope of geometry learning were examined under the subtitles of being able to define, using concepts and using mathematical language [2]. It was aimed to investigate the possible relationship between preservice teachers' written expression skills and their academic achievements. This study, which is based on the qualitative research approach, was designed with the case study model, since an existing situation was tried to be described in its own conditions. This study was carried out at the 2021-2022 academic year. The participants of the study consisted of preservice teachers studying in the primary school mathematics teaching department of a state university in the Central Anatolia Region. In the research, qualitative data obtained from student diaries were analyzed by content analysis method. When the findings of written expression skills were examined, it was determined that the candidates mostly preferred to use verbal expressions and were weak in using mathematical language. On the other hand, it was seen that the candidates were able to associate the related concept with daily life.
Keywords: Student diaries, written expression skills, geometric objects. 2020 Mathematics Subject Classification: 97D30, 97D40, 97D60, 97G80.

This study was produced from the master thesis of the first author under the supervision of the second author.

References

[1] Van de Walle, J., Karp, K. S., \& Williams, J. M. B. (2007). Elementary and middle school mathematics, Boston: Pearson.
[2] Zeybek, Z., \& Açıl, E. (2018). Writing activities in examining the mathematical communication skills of seventh grade students: Student diaries. Turkish Journal of Computer and Mathematics Education, 9(3), 476-512.

Examination of Preservice Teachers' Mathematical Thinking and Modeling Skills

Zeynep İĞDELİ ${ }^{1}$, Okan KUZU ${ }^{2}$, Osman ÇIL ${ }^{3}$
${ }^{1}$ Math Education, İnstitute of Science, Ahi Evran University, Kırşehir, Turkey,656@gmail.com
${ }^{2}$ Math Education, Faculty of Education, Ahi Evran University, Kırşehir, Turkey okan.kuzu@ahiehvran.edu.tr
${ }^{3}$ Classroom Education, Faculty of Education, Ahi Evran University, Kırşehir, Turkey ocil@ahievran.edu.tr

For the solution of the problems in our lives, individuals who value mathematics and who can use mathematics with advanced mathematical thinking power in modeling and problem solving are needed [1]. In order for students to have mathematical thinking and modeling skills, it is thought that teachers should have these skills first. For this reason, it was aimed to determine preservice teachers' mathematical thinking skills (customizing, generalizing, making assumptions, proving) and modeling skills in this study. The case study method was adopted as it was aimed to determine preservice teachers' existing mathematical thinking and modeling skills. In the study, mathematics and classroom teacher candidates studying at a state university in the Central Anatolia Region in the 2021-2022 academic year were studied. In this process, a mathematical modeling skill test was prepared in the context of mathematical thinking. During the development process of the test, the components specified by [2] were taken into account and it was ensured that each modeling problem overlapped with at least one of these components. Then, with the help of this test, it was aimed to examine the mathematical modeling skills of the candidates in the context of mathematical thinking and the test was applied to the pre-service mathematics and classroom teachers. The analysis process of the data continues and the findings will be discussed with the relevant literature.

This study was produced from the master thesis of the first author under the supervision of the second and third authors. Keywords: Mathematical Modeling, Mathematical Modeling Skill, Mathematical Thinking.
2020 Mathematics Subject Classification: First, Second, Third.

1 References

[1] MEB (2018). Secondary education mathematics curriculum (grades 9-12). Ministry of National Education, Ankara.
[2] Mason, J., Burton, L., Stacey, K. (2010). Thinking mathematically (Second Edition). England: Addison-Wesley Publishers.

Concept Images and Misconceptions of Preservice Mathematics Teachers about the Angles and Triangles Concepts

Esin ŞimŞEK ALTIPARMAK ${ }^{1}$, Okan KUZU ${ }^{2}$
${ }^{1}$ Kırşehir Ahi Evran Üniversitesi, Fen Bilimleri Enstitüsü, esinsim124@gmail.com
${ }^{2}$ Kırşehir Ahi Evran Üniversitesi, Eğitim Fakültesi, okan.kuzu@ahievran.edu.tr

The aim of this study is to determine the concept images and misconceptions of pre-service mathematics teachers about triangles. In this context, a measurement tool was prepared by scanning the relevant literature and applied to pre-service teachers studying in the department of mathematics education. The qualitative part of this study, which is based on the mixed research approach, was designed with a case study model, and the quantitative part was designed with a relational model. This study was carried out with the participation of teacher candidates studying at a state university in the 2021-2022 academic year. Data collection tools developed by Kaya (2018) (EK1) and Şengül-Akdemir (2017) (EK2) were used to determine the concept images and misconceptions about triangles, which is the aim of the research. In this study, SPSS statistical program and percentage and frequency calculations were used for the analysis of quantitative data. Content analysis was used in qualitative data analysis. Kendall W fit coefficient was calculated in order to determine whether the codes under the revealed category represent the relevant category and the categories represent the relevant theme. As a result of the research, the concept of angle is defined as "the region between the opening formed by the convergence of two rays with the same starting point". In addition, some of the candidates thought that the angle was "the measure of the region between two lines".
Keywords: Concept image, triangles, prospective teachers 2020 Mathematics Subject Classification: First, Second, Third.

Bu çalışma, ikinci yazar danışmanlığında birinci yazarın hazırladığıı yüksek lisans tezinden üretilmiştir.

References

[1] Nesher, P. (1987). Towards an instructionaltheory: The role of learners' misconceptionforthelearning of mathematics. Forthe Learning of Mathematics, 7(3), 33-39.
[2] Tall, D.,Vinner, S. (1981). Conceptimageandconceptdefinition in mathematics, withspecialreerencetolimitsandcontinuity. EducationalStudies in Mathematics, 12(2), 151-169.
[3] Vinner, S. (1983). Conceptdefinition, conceptimageandthenotion of function. International Journal of Mathematical Education in ScienceandTechnology, 14(3), 293-305.

On the cosine curve as 4 th and 6 th order Bézier curve in \mathbf{E}^{2}

Şeyda Kılıçoğlu
Department of Mathmatics, Faculty of education, Baskent University, Ankara, Turkey, seyda@baskent.edu.tr

In this study we have examined the way how the trigonometric cosine curve can be written as any order Bézier curve. We know that any order Bézier curve is polynomial curve in E^{2}. As a result we need a new method. Taylor series of a function is an infinite sum of terms of the functions derivatives at a single point a, also a Maclaurin series is a taylor series where $\mathrm{a}=0$, hence using the Taylor series and Maclaurin series, first we have examined cosine curve as the 4th order Bézier curve and then the 6th order Bézier curve based on the Bézier curve control points with matrix form in E^{2}. We give the control points of the 4th and the 6 th order Bézier curve based on the coefficients of Maclaurin expension for cosine function. Also we give the coefficients of Maclaurin expension for cosine function based on the control points of the 4th and the 6th order Bézier curves in E^{2}.

Keywords: Cosine curve, Maclaurin series, 4th order Bézier curve, 6th order Bézier curve.
2020 Mathematics Subject Classification: 53A04-53A05

1. "Derivatives of a Bézier Curve" https://pages.mtu.edu/~shene/COURSES/ cs3621/NOTES/spline /Bezier/ bezier-der. html.
2. D. Marsh, Applied Geometry for Computer Graphics and CAD. Springer Science and Business Media., 2006.
3. H. Zhang and F. Jieqing, Bezier Curves and Surfaces (2). State Key Lab of CAD\&CG Zhejiang University, 2006.
4. G. Farin, Curves and Surfaces for Computer-Aided Geometric Design. Academic Press, 1996.
5. H. Hagen, Bezier-curves with curvature and torsion continuity. Rocky Mountain J. Math., 16(3), (1986), 629-638.
6. S. Michael, Bezier curves and surfaces, Lecture 8, Floater Oslo Oct. 2003.
7. Ş. Kılıçoğlu, and S. Şenyurt, On the cubic bezier curves in E3. Ordu University Journal of Science and Technology, 9(2), (2019), 83-97.
8. Ş. Kılıçoğlu, and S. Şenyurt, On the Involute of the Cubic Bezier Curve by Using Matrix Representation in E^{3}. European Journal of Pure and Applied Mathematics. 13, (2020), 216-226.
9. H. Zhang and F. Jieqing, Bézier Curves and Surfaces (2). State Key Lab of CAD\&CG Zhejiang University, 2006.

Existence and multiplicity result for general Steklov problem

Mariya Sadiki ${ }^{1}$, Belhadj Karim ${ }^{2}$
${ }^{1}$ Department of Mathematics, LMIMA Group, Faculty of Sciences and Technology, Moulay Ismail University mariyasadiki@gmail.com
${ }^{2}$ Department of Mathematics, LMIMA Group, Faculty of Sciences and Technology, Moulay Ismail University, B.P. 52000, Errachidia, Morocco karembel.f@gmail.com

In this presentation, we study the existence of solutions for (p, q)-Laplacian Steklov problem with two parameters.
The main result of our research is to prove in different situations the existence and multiplicity of solutions for a (p, q)-Laplacian Steklov problem, using variational methods.

Keywords: (p, q)-Laplacian, Nonlinear boundary conditions, Variational methods.

2020 Mathematics Subject Classification: 58J10, 58J20, 35Jxx, 35J66, 35J50.

References

[1] Belhadj Karim, Abdellah Zerouali, and Omar Chakrone. Existence and multiplicity results for steklov problems with p (.)-growth conditions. Bulletin of the Iranian Mathematical Society, 44(3):819-836, 2018.
[2] Julián Fernández Bonder and Julio D Rossi. A nonlinear eigenvalue problem with indefinite weights related to the sobolev trace embedding. Publicacions Matematiques, pages 221235, 2002.
[3] Maria-Magdalena Boureanu and Diana Nicoleta Udrea. Existence and multiplicity results for elliptic problems with p ()—growth conditions. Nonlinear Analysis: Real World Applications, 14(4):1829-1844, 2013.

A Solution Algorithm for An Inverse Problem for the Kinetic Equation which Involves Poisson Bracket

Muhammed Hasdemir ${ }^{1}$, İsmet Gölgeleyen ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Arts and Sciences, Zonguldak Bülent Ecevit University, Zonguldak, Türkiye, m.hasdemir@yahoo.com
${ }^{2}$ Department of Mathematics, Faculty of Arts and Sciences, Zonguldak Bülent Ecevit University, Zonguldak, Türkiye, ismet.golgeleyen@beun.edu.tr

In this work, we deal with an inverse source problem for a stationary kinetic equation which involves Poisson Bracket and scattering term. Kinetic equation is a partial differential equation which arises in many areas of science and technology such as semiconductors, stochastic dynamical systems, traffic flow, system biology. Numerical solution of some inverse problems for the stationary kinetic and transport equations were studied in [1-3] by using finite difference and Galerkin methods.
In this study, we first discuss the uniqueness and existence results on the problem. Later, we present a numerical algorithm for the solution of the inverse problem which based on a hybrid approximation, that is composed of finite difference method, Lagrange's polynomial interpolation and Newton's Cotes formula. Finally, we test the proposed method by performing several numerical experiments. The obtained results are presented comparatively via graphs and tables. We conclude that the relative error in reconstruction of the unknown functions is sufficiently small.
Keywords: Inverse problem, kinetic equation, finite difference method, Lagrange interpolation, Newton-Cotes formula.
2020 Mathematics Subject Classification: 35R30, 65N21.

References

[1] A. Amirov, F. Gölgeleyen and A. Rahmanova. An inverse problem for the general kinetic equation and a numerical method. CMES, 43(2):131-147, 2009.
[2] A. Amirov, Z. Ustaoğlu and B. Heydarov. Solvability of a two dimensional coefficient inverse problem for transport equation and a numerical method. Transport Theory and Statistical Physics, 40(1):1-22, 2011.
[3] I. Gölgeleyen. An inverse problem for a generalized transport equation in polar coordinates and numerical applications. Inverse Problems, 29(9):095006, 2013.

A CHARACTERIZATION OF OPEN DISTANCE PATTERN UNIFORM CHORDAL GRAPHS AND DISTANCE HEREDITARY GRAPHS

Bibin K. Jose ${ }^{1}$
${ }^{1} 1$ P.G. \& Research Department of Mathematics, S. D. College Alappuzha (University of Kerala), Alappuzha-3, Kerala, India, bibinkjose2002@gmail.com

Given an arbitrary nonempty subset A of vertices in a (p, q)-graph $G=$ (V, E), each vertex u in G is associated with the set $f_{A}^{o}(u)=\{d(u, v): v \in A, u \neq v\}$, where $d(x, y)$ denotes the usual distance between the vertices x and y in G, called its open A-distance pattern. G is called an open distance-pattern uniform (or, in short, odpu)-graph if there exists a nonempty subset $A \subseteq V(G)$ such that $f_{A}^{o}(u)$ is independent of the choice of $u \in V(G)$, where the set-valued function (or, set-valuation) f_{A}^{o} is called the open distance pattern uniform (or, an odpu-) labeling of G and A is called an odpu-set of G. The minimum cardinality of an odpu-set in, if it exists, is the odpu-number $\varsigma(G)$ of G. Given any property P, we establish characterization of odpu-graph with property P. In this paper, we characterize odpu-chordal graphs and thereby characterize interval graphs, split graphs, strongly chordal graphs and ptolemaic graphs that are odpu-graphs. We also characterize odpu-distance hereditary graphs.

Keywords: Open distance-pattern uniform graphs, Open distancepattern uniform (odpu-) set, Odpu-number, odpu-chordal graphs, odpu-interval graphs, odpu-split graphs, odpu-strongly chordal graphs, odpu-ptolemaic graphs, odpudistance hereditary graphs.
2020 Mathematics Subject Classification: 05C12
References
[1] H. J. Bandelt and H. M. Mulder, Distance-hereditary Graphs, J. Combin. Theory Ser. B 41 (1986) 182-208.
[2] Bibin K Jose, Open Distance Pattern Uniform Graphs, Int J. Mathematical Combinatorics vol-3, No-3, (2009), 103-115.
[3] Bibin K Jose, Graph Products of Open Distance Pattern Uniform Graphs, preprint.
[4] F. Buckley and F. Harary, Distance in graphs, Addison Wesley Publishing Company, Advanced Book Programme, Redwood City, CA, 1990.
[5] F. Harary, Graph Theory, Addison Wesley, Reading, Massachusetts, 1969.
[6] E. Howorka, A characterization of Distance-hereditary Graphs, Quart. J. Math. Oxford 28 (1977) 417-420.
[7] E. Howorka, A characterization of Ptolemaic Graphs, J. Graph Theory 5 (1981) 323-331.
[8] Prabir Das and S. B. Rao, Center Graphs of Chordal Graphs, Proc. Combinatorics and Applications. Indian Statistical Institute, Kolkata, (1982) 81-94.
$\underset{\substack{\text { UNVERSTTY } \\ \text { PUBLICATIONS }}}{\text { and }}$

Associated curves of a framed curve in Euclidean 3-space

Zeynep Bülbül ${ }^{1}$, Mustafa Düldül ${ }^{2}$
${ }^{1}$ Department of Mathematics, Science and Arts Faculty, Yildiz Technical University, Istanbul, Turkey, zeynepbulbul3@gmail.com
${ }^{2}$ Department of Mathematics, Science and Arts Faculty, Yildiz Technical University, Istanbul, Turkey, mduldul@yildiz.edu.tr

In this paper, we define some new curves associated to a framed curve in Euclidean 3-space. These new curves which are defined as integral curves of some vector fields of a framed curve includes framed generalized principal-direction curve, framed generalized binormal-direction curve and framed Darboux-direction curve. We obtain relationships between the framed curvatures of new defined framed curves and framed curvatures of given framed curve. By using the obtained relationships we give some characterizations for such curves.
Keywords: framed curve, framed helix, framed slant helix, framed direction curve.
2020 Mathematics Subject Classification: 58K05, 53A04.

References

[1] S. Honda, M. Takahashi. Framed curves in the Euclidean space. Adv. Geom., 16(3): 265-276, 2016.
[2] Y. Wang, D. Pei, R. Gao. Generic properties of framed rectifying curves. Mathematics, 7(1): 37, 2019.
[3] O.Z. Okuyucu, M. Canbirdi, Framed slant helices in Euclidean 3-space. Advances in Difference Equations, 2021: 504, 2021.
[4] J.H. Choi, Y.H. Kim. Associated curves of a Frenet curve and their applications. Applied Mathematics and Computation, 218: 9116-9124, 2012.
[5] S. Honda, M. Takahashi. Bertrand and Mannheim curves of framed curves in the 3dimensional Euclidean space. Turk J Math, 44: 883-899, 2020.
[6] R.L. Bishop, There is more than one way to frame a curve, The American Mathematical Monthly, 82(3): 246-251, 1975.

A New Approach Tubular Surface with a new frame in G_{3}

Gökhan MUMCU ${ }^{1}$, Ali ÇAKMAK ${ }^{2}$, Tülay ERİ̧̧̇iR ${ }^{3}$, Sezai KIZILTUĞ ${ }^{3}$
${ }^{1}$ Department of Mathematics, Graduate School of Natural and Applied Sciences, Erzincan Binali Yıldırım University, Erzincan, Turkey, gokhanmumcu@outlook.com ${ }^{2}$ Department of Mathematics, Faculty of Arts and Sciences, Bitlis Eren University, Bitlis, Turkey, acakmak@beu.edu.tr ${ }^{3}$ Department of Mathematics, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, Erzincan, Turkey, tulay.erisir@erzincan.edu.tr, skiziltug@erzincan.edu.tr

A channel or canal surface is a surface produced by the envelope of a family of spheres whose centers are located on the directrix of a space curve. The canal surface is known as a pipe surface when the radius of the producing spheres are constant. The canal surface is called a tube or tubular surface when the radius function $r(t)=r$ is a constant. Tube surfaces are used to show 3-dimensional shapes such as pipes, ropes, poles. In addition, tube surfaces are used for modeling solids and surfaces for computer aided geometric design and fabrication. On the other hand, Galilean geometry is one of the geometries whose motions are the Galilean transformations of classical kinematics. In this paper, first of all, we define a new orthogonal frame in G_{3}. Then, we get condition of general helix in regard to new orthogonal frame in the Galilean 3 -space and we obtain characterizations of tubular surfaces with the new orthogonal frame in G_{3}.

Keywords: Tubular surface, helix, Galilean space
2020 Mathematics Subject Classification: 53A04, 53A05, 53A40.

References

[1] Z. Küçükarslan Yuzbaşı and M. Bektaş. On the construction of a surface family with common geodesic in galilean space g3. Open Physics, 14, 012016.
[2] Z. Milin Sipus. Ruled weingarten surfaces in the galilean space. Periodica Mathematica Hungarica, 56:213-225, 062008.
[3] T. Maekawa, N. Patrikalakis, T. Sakkalis, and G. Yu. Analysis and applications of pipe surfaces. Computer Aided Geometric Design, 15:437-458, 051998.
[4] S. Kızıltuğ and Y. Yaylı. Timelike tubes with darboux frame in minkowski 3-space. International Journal of Physical Sciences, 8, 012013.
[5] M. Dede. Tubular surfaces in galilean space. Mathematical Communications, 18, 052013.

Approximate controllability results for Caputo fractional Volterra-Fredholm integro-differential systems of order $1<r<2$

M. Mohan Raja ${ }^{1}$, V. Vijayakumar ${ }^{1}$
${ }^{1}$ Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore - 632 014, Tamil Nadu, India. raja.marimuthu1605@gmail.com.

This paper investigates the issue of approximate controllability results for fractional Volterra-Fredholm integro-differential systems of order $r \in(1,2)$. The main results of this paper are tested by using fractional calculations, cosine families, mild solutions multivalued functions, and Martelli's fixed point theorem. In the beginning, we investigated the approximate controllability results of mild solutions by using sufficient conditions. Finally, an example is presented to illustrate the theory of the obtained result.
Keywords: Fractional differential systems, Cosine and sine families, Mild solutions, Fixed point techniques.
2020 Mathematics Subject Classification: 34A08, 26A33, 34K30, 47D09, 47H10.

References

[1] J. W. He, Y. Liang, B. Ahmad and Y. Zhou. Nonlocal fractional evolution inclusions of order $\alpha \in(1,2)$. Mathematics, 209 (7) (2019), 1-17.
[2] M. Mohan Raja, V. Vijayakumar, R. Udhayakumar and Y. Zhou. A new approach on the approximate controllability of fractional differential evolution equations of order $1<r<2$ in Hilbert spaces. Chaos, Solitons Ef Fractals. 141 (2020), 1-10. 110310.
[3] I. Podlubny. Fractional differential equations, An introduction to fractional derivatives, fractional differential equations, to method of their solution and some of their applications. San Diego, CA: Academic Press, (1999).
[4] R. Sakthivel, R. Ganesh and S. Suganya. Approximate controllability of fractional neutral stochastic system with infinite delay. Reports on mathematical physics. 70 (2012), 1-21.
[5] H. M. Srivastava A. A. Kilbas and J. J. Trujillo. Theory and applications of fractional differential equations. Elsevier, Amsterdam, (2006).
[6] V. Vijayakumar, C. Ravichandran, K. S. Nisar and K. D. Kucche. New discussion on approximate controllability results for fractional Sobolev type Volterra-Fredholm integrodifferential systems of order $1<r<2$. Numerical Methods for Partial Differential Equations. 2021, 1-19. DOI:10.1002/num.22772.
[7] Y. Zhou and J. W. He. New results on controllability of fractional evolution systems with order $\alpha \in(1,2)$. Evolution Equations and Control Theory. 10 (3) (2021), 491-509.
[8] Y. Zhou. Basic Theory of Fractional Differential Equations. World Scientific, Singapore, (2014).

Parallel Transported Along Dual Lorentzian Spacelike And Timelike Curves

Fatma KARAKUŞ ${ }^{1}$, Tevfik ŞAHİN ${ }^{2}$, Yusuf YAYLI ${ }^{3}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences and Arts, Sinop University, Sinop, Türkiye, fkarakus@sinop.edu.tr
${ }^{2}$ Department of Mathematics, Faculty of Sciences and Arts, Amasya University, Amasya, Türkiye, tevfiksah@gmail.com
${ }^{3}$ Department of Mathematics, Faculty of Sciences, Ankara University, Ankara, Türkiye, yayli@science.ankara.edu.tr

There are different transport laws such as parallel and Fermi-Walker transport for a tensor along a given curve. The parallel transport for the tensor along the given curve is defined as the law which makes that its covariant derivative be zero. If the curve is a geodesic, then the tangent vector will coincide at another point of the curve with its parallel transported vector. Otherwise, the tangent vector will not coincide with its parallel transported vector. In this case, there is Fermi-Walker's law that another transport law. The Fermi-Walker transport of the tensor along the given curve is defined as the law which makes that its the Fermi-Walker derivative along the curve be zero. In this study, we investigate Fermi-Walker derivative and parallel transported frame along both the non-null unit speed dual Lorentzian timelike curve and the non-null unit speed dual Lorentzian spacelike curve which are with non-null dual principal normals in dual Lorentzian space. Fermi-Walker transport, non-rotating frame and Fermi-Walker termed Darboux vector concepts are given along the non-null unit speed dual Lorentzian curve with non-null dual principal normals. Being Fermi-Walker transport conditions are analyzed for any dual Lorentzian timelike and dual Lorentzian spacelike curves.
Keywords: Fermi-Walker derivative, Fermi-Walker transport, Non-rotating frame. 2020 Mathematics Subject Classification: 53B20, 53B21, $53 Z 05$.

References

[1] M.S. Berman, Introduction to general relativistic and scalar-tensor cosmologies, Nova Science Publishers, Inc., New York, 2007.
[2] G.T. Pripoae, Generalized Fermi-Walker Transport, Libertas Math., XIX (1999) 65-69.
[3] G.T. Pripoae, Generalized Fermi-Walker Parallelism Induced by Generalized Schouten Connections, Geometry Balkan Press (2000) 117-125.

Uniform well-posedness and stability for fractional Navier-Stokes equations with Coriolis force in critical Fourier-Besov-Morrey spaces

Ahmed El Idrissi ${ }^{1}$, Brahim El Boukari ${ }^{2}$, Jalila El Ghordaf ${ }^{3}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco, ahmed.elidrissi@usms.ma
${ }^{2}$ Department of Mathematics, Superior School of Technology, Sultan Moulay Slimane University. Beni Mellal, Morocco, elboukaribrahim@yahoo.fr
${ }^{3}$ Centre Rgional des Mtiers de l'Education et de la Formation de la Rgion de beni mellal khenifra(CRMEF) Morroco, elg-jalila@yahoo.fr

In this paper, we study the initial value problem of the three-dimensional fractional Navier-Stokes equations with Coriolis force in critical homogenous Fourier-Besov-Morrey spaces $\mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{s}\left(\mathbb{R}^{3}\right)$ with $s=1-2 \alpha+\frac{3}{p^{\prime}}+\frac{\lambda}{p}$. By making use of the Fourier localization argument and the Littlewood-Paley theory as in the works $[1,2,3,4,5]$, we get local well-posedness results and global wellposedness results with small initial data u_{0}, which is a divergence-free vector field, belonging to the critical homogenous Fourier-Besov-Morrey spaces $\mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{s}\left(\mathbb{R}^{3}\right)$ with $s=1-2 \alpha+\frac{3}{p^{\prime}}+\frac{\lambda}{p}$. Moreover, we prove that the corresponding global solution decays to zero as time goes to infinity, and we give the stability result for global solutions. The space $\mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{s}$ covers many classical spaces, e.g. the Fourier-Herz space $\dot{\mathcal{B}}_{q}^{s}$, the Fourier-Besov-Lebesgue space $F \dot{B}_{p, \lambda, q}^{s}$, and the Lei-Lins space χ^{s}. The result of this paper extends the works of $[1,2,3,4,5]$.

Keywords: Navier-Stokes equations, global well-posedness, Coriolis force, Fourier-Besov-Morrey space.
2020 Mathematics Subject Classification: 35Q30, 76D05, 76D03.

References

[1] Tsukasa Iwabuchi and Ryo Takada. Global well-posedness and ill-posedness for the navierstokes equations with the coriolis force in function spaces of besov type. Journal of Functional Analysis, 267(5):1321-1337, 2014.
[2] Weihua Wang and Gang Wu. Global mild solution of the generalized navier-stokes equations with the coriolis force. Applied Mathematics Letters, 76:181-186, 2018.
[3] Jamel Benameur. Long time decay to the lei-lin solution of 3d navier-stokes equations. Journal of Mathematical Analysis and Applications, 422(1):424-434, 2015.
[4] Daoyuan Fang, Bin Han, and Matthias Hieber. Global existence results for the navierstokes equations in the rotational framework in fourier-besov spaces. In Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics, pages 199-211. Springer, 2015.
[5] Paweł Konieczny and Tsuyoshi Yoneda. On dispersive effect of the coriolis force for the stationary navier-stokes equations. Journal of Differential Equations, 250(10):3859-3873, 2011.

Symmetric functions for (p, q)-numbers and Pell Lucas polynomials

Meryem Bouzeraib ${ }^{1}$, Ali Boussayoud ${ }^{2}$
${ }^{1}$ LMAM Laboratory and Department of Mathematics, Mohamed Seddik Ben Yahia University, Jijel, Algeria, meryembouzeraib@gmail.com
${ }^{2}$ LMAM Laboratory and Department of Mathematics, Mohamed Seddik Ben Yahia University, Jijel, Algeria, alboussayoud@gmail.com

In this work, we give some new generating functions of the products (p, q) Fibonacci numbers, (p, q)-Lucas numbers, (p, q)-Pell numbers, (p, q)-Pell Lucas numbers, (p, q)-Jacobsthal numbers and (p, q)-Jacobsthal Lucas numbers at positive and negative indices with Pell Lucas polynomials, by making use of useful properties of binary of the symmetric functions.
Keywords: Symmetric functions, Generating functions, Pell Lucas polynomials. 2020 Mathematics Subject Classification: 05E05, 11B39.

References

[1] N. Saba A. Boussayoud. New theorem on symmetric function and their applications on some (p,q)- numbers. Journal of Applied Mathematics and Informatics, 40(2):243-257, 2022.
[2] I. Macdonald. Symmetric functions and Hall polynomials. Oxford Univ Press, Oxford, 1979.

Existence and uniqueness results for Hilfer fractional integro-differential equation

Rima Faizi
LMA Laboratory, Department of Mathematics, University of Badji Mokhtar, Annaba,
Algeria. rima24math@gmail.com

In this paper, we discuss the existence and uniqueness of solution for the Hilfer fractional integro-differential equations with nonlocal Erdélyi-Kober fractional condition. First, the equivalence of this class of problem and a nonlinear Volterra integral equation is established. Next, the existence and uniqueness results are obtained by using Krasnoselskii's fixed point theorem. Further, an example is given to illustrate our theory results.
Keywords: Hilfer fractional derivative, integro-differential equations, fixed point theorem.
2020 Mathematics Subject Classification: 26A33, 45G10, 34A12,47H10.

References

[1] D. Vivek, K. Kanagarajan, E. M. Elsayed, Some existence and stability results for Hilferfractional implicit differential equations with nonlocal conditions, Mediterr J Math, 15(1), 2018.
[2] A. Aghajani, Y. Jalilian, J.J. Trujillo, On the existence of solutions of fractional integrodifferential equations, Fractional Calculus and Applied Analysis, 15(1):44-69, 2012.
[3] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1995.
[4] R. Hilfer, Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000.

On predictors of partial parameters under a partitioned linear model and its reduced models

Nesrin Güler ${ }^{1}$, Melek Eriş Büyükkaya ${ }^{2}$, Melike Yiğit ${ }^{3}$
${ }^{1}$ Department of Econometrics, Faculty of Political Sciences, Sakarya University, Sakarya, Turkey, TR-54187, nesring@sakarya.edu.tr
${ }^{2}$ Department of Statistics and Computer Sciences, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey, TR-61080, melekeris@ktu.edu.tr
${ }^{3}$ Department of Mathematics, Faculty of Science, Sakarya University, Sakarya, Turkey, TR-54187, melikeyigitt@gmail.com

Linear regression models are one of the most commonly used statistical methods in the field of statistics and other disciplines. Linear regression models can be divided into certain partitioned forms to conduct statistical inference on partial parameters under the partitioned linear models and some of their reduced models. In this study, we consider a partitioned linear model and its reduced models. We introduce the technical concepts and definitions of consistency and predictability conditions of the best linear unbiased predictors (BLUPs) of unknown vectors including partial parameters. Further, we derive analytical formulas for calculating BLUPs of unknown vectors including partial parameters under a given partitioned linear model and its reduced models. Our main purpose is to derive some results from the comparison of BLUPs under the partitioned linear model and its reduced models by considering covariance matrices of BLUPs. For doing the comparisons, we use the formulas of inertias and ranks of block matrices. The subjects related to the results obtained in this study can also be found in [1-6].
Keywords: BLUP, partitioned linear model, reduced linear model.
2020 Mathematics Subject Classification: 62J05, 62H12, 15A03.

References

[1] J. Groß and S. Puntanen. Estimation under a general partitioned linear model. Linear Algebra Appl., 321:131-144, 2000.
[2] N. Güler. On relations between BLUPs under two transformed linear random-effects models. Communications in Statistics -Simulation and Computation, doi:10.1080/03610918.2020.1757709, 2020.
[3] P. Bhimasankaram and R. Saharay. On a partitioned linear model and some associated reduced models. Linear Algebra Appl., 264:329-339, 1997.
[4] R. Ma and Y. Tian. A matrix approach to a general partitioned linear model with partial parameter restrictions. Linear and Multilinear Algebra, 0:1-20, 2020.
[5] Y. Tian. Some decompositions of OLSEs and BLUEs under a partitioned linear model. Int. Stat. Rev., 75(2):224-248, 2007.
[6] Y. Tian and X. Zhang. On connections among OLSEs and BLUEs of whole and partial parameters under a general linear model. Stat. Probab. Lett., 112:105-112, 2016.

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

Optimal control of a fractional SIR model under the effect of nonlinear incidence and recovery rates

Fatma Soytürk ${ }^{1}$, Derya Avcı ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science and Arts, Balıkesir University, Balıkesir, Türkiye, fatmastrk@gmail.com,
${ }^{2}$ Department of Mathematics, Faculty of Science and Arts, Balıkesir University, Balıkesir, Türkiye, dkaradeniz@balikesir.edu.tr

This study presents optimal control of a fractional SIR epidemic model under the effect of nonlinear incidence and recovery rates. The incidence rate which is a threshold parameter refers to the interaction between those infected and those susceptible for a disease in a population. With the help of this ratio, the course of the disease can be predicted. It can be defined in different ways, taking into account the population size and status of the disease. In this work, nonlinear Monod equation is used as the incidence rate. The analyzed model is considered in terms of the Caputo fractional derivative. The main purpose is to examine the effect of this function in the population after adapting the control function to the model. Control strategy is determined to reduce the number of infected individuals. The optimal system is numerically solved by the Diethelm's predictor-corrector algorithm combined with the forwardbackward sweep method. Controlled and uncontrolled behaviors of the system are simulated by MATLAB software. According to the numerical simulations, the reduction in the number of infected individuals is highly desirable under the influence of optimal control.

Keywords: SIR model, optimal control, Caputo fractional derivative, nonlinear incidence rate, nonlinear recovery rate, predictor-corrector algorithm.

2020 Mathematics Subject Classification: 26A33, 93-XX, 49N10.

References

[1] F. S. Alshammari and M.A. Khan. Dynamic behaviors of a modified SIR model with nonlinear incidence and recovery rates. Alexandria Engineering Journal, 60(3):2997-3005, 2021.
[2] J. Ren, Y. Xu and C. Zhang. Optimal control of a delay-varying computer virus propagation model. Discrete Dynamics in Nature and Society, Article ID 210291, 7 pages, 2013.
[3] H. Kheiri and M. Jafari. Optimal control of a fractional-order model for the HIV/AIDS epidemic. International Journal of Biomathematics, 11(07), Article ID 1850086, 23 pages, 2018.
[4] D. Baleanu, A. Jajarmi, S.S. Sajjadi and D. Mozyrska. A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(8), 083127, 2019.

Existence and uniqueness results for a revisited Nicholson's blowflies model with two different variable delays and a nonlinear harvesting term

Ahlème Bouakkaz ${ }^{1}$, Rabah Khemis ${ }^{2}$
${ }^{1}$ Lamahis Laboratory, University of 20 August 1955, Skikda, Algeria, ahlemkholode@yahoo.com
${ }^{2}$ Lamahis Laboratory, University of 20 August 1955, Skikda, Algeria, kbra28@yahoo.fr

The current work is mainly concerned with the existence, uniqueness and stability of positive periodic solutions for a first order delay differential equation that describes the dynamics of a population of Lucila cuprina which is held to be responsible for an estimated 90% of all cutaneous myiasis that cause losses of several hundreds of millions of dollars each year.

This revisited model involves two different variable delays, the first one which represents a harvesting lag is a time varying delay while the second one which denotes the life-cycle duration, depends on both the time and the population of sexually mature adults. By establishing an equivalence between the considered problem and a nonlinear integral equation, and using some properties of the obtained Green's kernel as well as Banach and Schauder's fixed point theorems, we prove our desired results. These last ones are completely new and complement those of previous publications.
Keywords: Fixed point theorem, Green's function, population dynamics 2020 Mathematics Subject Classification: 47H10, 34B27, 92D25.

References

[1] A. Bouakkaz. Positive periodic solutions for a class of first-order iterative differential equations with an application to a hematopoiesis model. Carpathian J. Math., 38(2):347355, 2022.
[2] A. Bouakkaz and R. Khemis. Positive periodic solutions for a class of second-order differential equations with state-dependent delays. Turk J Math., 44(4):1412-1426, 2020.
[3] A. Bouakkaz and R. Khemis. Positive periodic solutions for revisited nicholson's blowflies equation with iterative harvesting term. J. Math. Anal. Appl., 494(2):124663, 2021.
[4] S. Chouaf, A. Bouakkaz, and R. Khemis. On bounded solutions of a second-order iterative boundary value problem. Turkish J. Math., 46(SI-1):453-464, 2022.

RECURSIVE DOUBLE KERNEL ESTIMATOR OF THE CONDITIONAL QUANTILE FOR FUNCTIONAL ERGODIC DATA

Imane Bouazza ${ }^{1}$, Fatima Benziadi ${ }^{2}$, Toufik Guendouzi ${ }^{3}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences, University of Saïda Dr. Moulay Tahar, Saïda, Algeria, imen.bouazza@univ-saida.dz
${ }^{2}$ Department of Mathematics, Faculty of Sciences, University of Saïda Dr. Moulay Tahar, Saïda, Algeria, benziadi.fatima@univ-saida.dz
${ }^{3}$ Department of Mathematics, Faculty of Sciences, University of Saïda Dr. Moulay Tahar, Saïda, Algeria, toufik.guendouzi@univ-saida.dz

The main purpose of the present work is to consider the conditional quantile estimator of a scalar response Y given an explanatory variable $X=x$ taking its values in a semi-metric space \mathcal{H}. Hence, the asymptotic normality of the proposed estimator is obtained when the observations are sampled from a functional ergodic process. The result confirms the prospect proposed in Benziadi et al. (2016). The usefulness of this result will be illustrated in the construction of confidence bands and as applications, a comparison study based on a finite-sample behavior of the estimator is investigated by simulations as well.
Keywords: Recursive estimate, Conditional quantile, Functional data, Ergodic data, Asymptotic normality.
2020 Mathematics Subject Classification: $62 \mathrm{G} 20,62 \mathrm{G} 08,62 \mathrm{E} 20$.

References

[1] F. Benziadi, A. Laksaci, and F. Tebboune. Recursive kernel estimate of the conditional quantile for functional ergodic data. Communications in Statistics - Theory and Methods, 45(11):3097-3113, 2016.

GENERAL DECAY OF SOLUTIONS IN ONE-DIMENSIONAL POROUS-ELASTIC SYSTEM WITH MEMORY AND DISTRIBUTED DELAY TERM WITH SECOND SOUND

Fares Yazid ${ }^{1}$, Fatima Siham Djeradi ${ }^{2}$
${ }^{1}$ Department of mathematics, Faculty of sciences, University Amar Telidji, Laghouat, Algeria, f.yazid@lagh-univ.dz
${ }^{2}$ Department of mathematics, Faculty of sciences, University Amar Telidji, Laghouat, Algeria, f.djarradi-math@lagh-univ.dz

We investigate a one-dimensional porous-elastic system with the presence of both memory and distributed delay terms in the second equation with second sound. Using the well known energy method combined with Lyapunov functionals approach, we obtain a general decay result.
Keywords: Porous system, General decay, Exponential Decay, Memory term, Distributed delay term.
2020 Mathematics Subject Classification: 35B40, 35L70, 93D15, 93D20.

References

[1] Serge Nicaise and Cristina Pignotti. Stabilization of the wave equation with boundary or internal distributed delay. Differential and Integral Equations, 21(9-10):935-958, 2008.
[2] Tijani A Apalara. General decay of solutions in one-dimensional porous-elastic system with memory. Journal of Mathematical Analysis and Applications, 469(2):457-471, 2019.
[3] Carlos A Raposo, Tijani A Apalara, and Joilson O Ribeiro. Analyticity to transmission problem with delay in porous-elasticity. Journal of Mathematical Analysis and Applications, 466(1):819-834, 2018.

Some new results on periodic solutions for a periodic delay hematopoiesis model with a unimodal production function

Rabah Khemis ${ }^{1}$, Ahlème Bouakkaz ${ }^{2}$
${ }^{1}$ Lamahis Laboratory, University of 20 August 1955, Skikda, Algeria, kbra28@yahoo.fr
${ }^{2}$ Lamahis Laboratory, University of 20 August 1955, Skikda, Algeria, ahlemkholode@yahoo.com

The main purpose of this work is to study a first order hematopoiesis model with periodic coefficients and variable delays. The proofs of the existence results rely essentially on the Schauder's fixed point theorem and the Green's function method. Via the Banach fixed point theorem, the existence, uniqueness and stability of positive periodic solutions are further analyzed. To the best of our knowledge, there are no findings reported in the literature that investigated this problem.
Keywords: Hematopoiesis model, iterative equation, fixed point 2020 Mathematics Subject Classification: 34B27, 47H10.

References

[1] A. Bouakkaz, A. Ardjouni, and A. Djoudi. Periodic solutions for a second order nonlinear functional differential equation with iterative terms by schauder's fixed point theorem. Acta Math. Univ. Comen., 87(2):223-235, 2018.
[2] A. Bouakkaz, A. Ardjouni, R. Khemis, and A. Djoudi. Periodic solutions of a class of third-order functional differential equations with iterative source terms. Bol. Soc. Mat. Mex., 26(2):443-458, 2020.
[3] A. Bouakkaz. Positive periodic solutions for a class of first-order iterative differential equations with an application to a hematopoiesis model. Carpathian J. Math., 38(2):347355, 2022.
[4] A. Bouakkaz and R. Khemis. Positive periodic solutions for a class of second-order differential equations with state-dependent delays. Turk J Math., 44(4):1412-1426, 2020.
[5] A. Bouakkaz and R. Khemis. Positive periodic solutions for revisited nicholson's blowflies equation with iterative harvesting term. J. Math. Anal. Appl., 494(2):124663, 2021.
[6] R. Khemis, A. Ardjouni, A. Bouakkaz, and A. Djoudi. Periodic solutions of a class of third-order differential equations with two delays depending on time and state. Comment. Math. Univ. Carolinae., 60(3):379-399, 2019.
[7] S. Chouaf, A. Bouakkaz, and R. Khemis. On bounded solutions of a second-order iterative boundary value problem. Turkish J. Math., 46(SI-1):453-464, 2022.

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

Existence, uniqueness and stability of solutions for a first order iterative functional differential equation

Safa Chouaf ${ }^{1}$, Rabah Khemis ${ }^{2}$, Ahlème Bouakkaz ${ }^{3}$
${ }^{1}$ Mathematics, Sciences, University of 20 August 1955, Skikda, Algeria, safachouaf10@gmail.com
${ }^{2}$ Mathematics, Sciences, University of 20 August 1955, Skikda, Algeria, kbra28@yahoo.fr
${ }^{3}$ Mathematics, Sciences, University of 20 August 1955, Skikda, Algeria, ahlemkholode@yahoo.com

This work is devoted to investigate a first-order iterative functional differential equation. A set of sufficient conditions for the existence, uniqueness and continuous dependence on parameters of positive periodic solutions are established by the help of the contraction mapping principle as well as some properties of a Green's kernel that is obtained after the conversion of the considered equation into an integral one. Our results are new and generalize some known ones to some extent.

Keywords: Fixed point theorem, iteration, periodic solution.
2020 Mathematics Subject Classification: 47H10, 30D05, 34C25.

References

[1] A. Bouakkaz. Positive periodic solutions for a class of first-order iterative differential equations with an application to a hematopoiesis model. Carpathian J. Math, 38(2):347355, 2022.
[2] A. Bouakkaz and R. Khemis. Positive periodic solutions for a class of second-order differential equations with state-dependent delays. Turk J Math, 44:1412-1426, 2020.
[3] T. Candan. Existence of positive periodic solutions of first order neutral differential equations with variable coefficients. Appl. Math. Lett, 52:142-148., 2016.
[4] S. Chouaf A. Bouakkaz, R. Khemis. Some existence results on positive solutions for an iterative second-order boundary-value problem with integral boundary conditions. Bol. Soc. Paran. Mat, 40:1-10., 2022.

Some Fixed Point Theorems on O-Complete Metric Spaces

Kübra ÖZKAN ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Science and Arts, Manisa Celal Bayar University, Manisa, TURKEY, kubra.ozkan@hotmail.com

In this study, some coupled fixed point theorems on metric spaces endowed with an orthogonal relation are presented. In addition, this study consists of an example showing the importance of the results obtained.
Keywords: O-completeness, Fixed Point Theory, Orthogonal Set. 2020 Mathematics Subject Classification: $47 \mathrm{H} 10,54 \mathrm{H} 25$.

References

[1] H. Baghani, M.E. Gordji, and M. Ramezani. Orthogonal sets: The axiom of choice and proof of a fixed point theorem. Journal of Fixed Point Theory and Applications, 18(3):465-477, 2016.
[2] T.G. Bhaskar and V. Lakshmikantham. Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Analysis, 65:1379-1393, 2006.
[3] M.E. Gordji, M. Rameani, M. De La Sen, and Y.J. Cho. On orthogonal sets and banach fixed point theorem. Fixed Point Theory, 18:569-578, 2017.
[4] D. Guo and V. Lakshmikantham. Coupled fixed points of nonlinear operators with applications. Nonlinear Analysis, 11:623-632, 1987.
[5] V. Lakshmikantham and L.j. Círíc. Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Analysis, 70:4341-4349, 2009.
[6] A. Mutlu, K. Özkan, and U. Gürdal. Coupled fixed point theorems on bipolar metric spaces. European Journal of Pure and Applied Mathematics, 10(4):655-667, 2017.
[7] A. Mutlu, K. Özkan, and U. Gürdal. Coupled fixed point theorem in partially ordered modular metric spaces and its an application. Journal of Computational Analysis and Applications, 25(2):1-10, 2018.
[8] K. Sawangsup, W. Sintunavarat, and Y.J. Cho. Fixed point theorems for orthogonal fcontraction mappings on o-complete metric spaces. Journal of Fixed Point Theory and Applications, 22(1):1-14, 2020.
[9] K. Özkan. Some coupled fixed point theorems for f -contraction mappings. Erzincan University Journal of Science and Technology, 13(13):97-105, 2020.

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

On Deformed Lifts

Seher Aslanci ${ }^{1}$
${ }^{1}$ Department of Mathematics and Science Education, Faculty of Education, Alanya Alaaddin Keykubat University, Antalya, Turkey, seher.aslanci@alanya.edu.tr

Let $R\left(\varepsilon^{2}\right)$ be an algebra of order 3 with a canonical basis $\left\{e_{1}, e_{2}, e_{3}\right\}=$ $\left\{1, \varepsilon, \varepsilon^{2}\right\}, \varepsilon^{3}=0$. We proved that if $w\left(z^{1}, \ldots, z^{n}\right)=y^{1}\left(x^{1}, \ldots, x^{n}\right)+\varepsilon y^{2}\left(x^{1}, \ldots, x^{n}\right)+$ $\varepsilon^{2} y^{3}\left(x^{1}, \ldots, x^{n}\right)$, where $z^{i}=x^{i}+\varepsilon x^{n+i}+\varepsilon^{2} x^{2 n+i}, i=1, \ldots, n$, is a multi-variable $R\left(\varepsilon^{2}\right)$-holomorphic function, then the function $w=w\left(z^{1}, \ldots, z^{n}\right)$ has the following specific form:

$$
\begin{gathered}
w\left(z^{1}, \ldots, z^{n}\right)=y^{1}\left(x^{1}, \ldots, x^{n}\right)+\varepsilon\left(x^{n+i} \partial_{i} y^{1}+G\left(x^{1}, \ldots, x^{n}\right)\right) \\
+\varepsilon^{2}\left(x^{2 n+i} \frac{\partial y^{1}}{\partial x^{i}}+\frac{1}{2} x^{n+i} x^{n+j} \frac{\partial^{2} y^{1}}{\partial x^{i} \partial x^{j}}+x^{n+i} \frac{\partial G}{\partial x^{i}}+H\left(x^{1}, \ldots, x^{n}\right)\right)
\end{gathered}
$$

Let now $T^{2}\left(M_{r}\right)$ be the bundle of 2-jets, i.e. the tangent bundle of order 2 over C^{∞} - manifold $M_{r}, \operatorname{dim} T^{2}\left(M_{r}\right)=3 r$ and let $\left(x^{i}, x^{\bar{i}}, x^{\bar{i}}\right)$ be an induced local coordinates in $T^{2}\left(M_{r}\right)$. We proved that bundle $T^{2}\left(M_{r}\right)$ is a real modeling of $R\left(\varepsilon^{2}\right)$-holomorphic manifold $X_{r}\left(R\left(\varepsilon^{2}\right)\right)$. Using this fact in the bundle of 2jets we introduce the functions ${ }^{V} f,{ }^{I} f$ and ${ }^{C} f$. These functions ${ }^{V} f,{ }^{I} f$ and ${ }^{C} f$ are called recpectively the vertical,intermediate and complete lifts of f in M_{r} to $T^{2}\left(M_{r}\right)$. If $g=h=0$, then we have the $0-\operatorname{th} f^{0}, 1$-th f^{1} and 2 -th f^{2} lifts of f, i.e. the lifts ${ }^{I} f$ and ${ }^{C} f$ of f to $T^{2}\left(M_{r}\right)$ are respectively the deformed lifts of 1-th and 2 -th lifts of f. In the present report some differential-geometrical properties concerning vertical, intermediate and complete lifts were investigated.

Keywords: Holomorphic functions; bundle of 2-jets; deformed lift; 1-forms. 2020 Mathematics Subject Classification: 53C07, 53C15.

References

[1] K. Yano and S. Ishihara. Tangent and Cotangent Bundles. Marcel Dekker, New York, NY, 1973.
[2] K. Yano and S. Ishihara. Differential geometry of tangent bundles of order 2. Kodai Math. Sem. Rep, 20:318-354, 1968.
[3] S. Aslancı and T. Sultanova. Deformed lifts in the bundle of 2-jets. Tbilisi Matem J., 14:155-162, 2021.
[4] T. Sultanova and A. Salimov. On holomorphic metrics of 2-jet bundles. On Holomorphic Metrics of 2-jet Bundle, 2022.

An examination of the conceptual knowledge of teacher candidates in the elementary mathematics program regarding the concept of ratio

Berna YILDIZHAN ${ }^{1}$, Erhan ERTEKIN ${ }^{2}$
${ }^{1}$ Department of Mathematics and Science Education, Ahmet Keleşoğlu Education Faculty, Necmettin Erbakan University, Konya, Turkey, byildizhan@erbakan.edu.tr
${ }^{2}$ Department of Mathematics and Science Education, Ahmet Keleşoğlu Education Faculty, Necmettin Erbakan University, Konya, Turkey, eertekin@erbakan.edu.tr

There are two types of information, namely conceptual and procedural. Conceptual knowledge can be explained as the knowledge of concepts, relations between concepts and definitions in general terms [1]. Procedural knowledge, on the other hand, is the information that includes the processing steps and algorithm used in problem solving [3; 4]. An individual needs to have both types of knowledge to obtain meaningful learning. Even if the individual does not have conceptual knowledge, s/he stil can perform some problem-solving thanks to her/his procedural knowledge. However, it may be difficult for him/her to identify the procedures applied to solve the problem or the relationship between the solution and other problems. Conceptual knowledge gives meaning to and supports procedural knowledge and understanding occurs [2]. That is, a procedural knowledge devoid of a conceptual knowledge background cannot contribute to the mental development of the individual sunstantially. Thus, in the present study, it was aimed to explore the conceptual knowledge of teacher candidates in the elementary mathematics program about the concept of ratio. This qualitative study is designed as a case study and aimed to examine the conceptual knowledge of the teacher candidates in the elementary mathematics program about the concept of ratio in depth. The total number of participants was 105 college students studying in the elementary mathematics teaching program at a state university, and included only 4th-year (73) and 3rd year (32) students. The teacher candidates were asked to define and explain the concept of ratio. The content analysis method was used to analyze the data. As a result of the analysis, 4 basic conceptual structures related to the ratio were found. These were Relation, Comparison, Division and Fraction. The concept of ratio was expressed as the relationship between two or more multiplicities in the relationship category, the comparison of two or more multiplicities in the comparison category, the division of two multiplicities in the division category, and the fraction in the fraction category. The most common views on the concept

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

of ratio were respectively:"(i) Ratio is the comparison of the same or different kinds of multiplicities; (ii) Ratio is the division of two multiplicities of the same or different kind; (iii) Ratio is the relationship between multiplicities of the same or different kind; (iv) Ratio is the relative condition of multiplicities of the same or different kind; (v) Ratio is the relation; and (vi) Ratio is the relation between the part and the whole".
Keywords: Ratio, definition of the concept, conceptual knowledge.

References

[1] Canobi, K. H. (2009). Concept-procedure interactions in children's addition and subtraction. Journal of experimental child psychology, 102(2), 131-149. https://doi.org/10.1016/j.jecp.2008.07.008
[2] Ersoy, Y. (2002) "Matematik okur yazarlığı-II:Hedefler, geliștirilecek yetiler ve beceriler". (Düzenleme:O. Çelebi, Y. Ersoy, G. Öner) Matematik Etkinlikleri Sempozyum-2002 Bildiriler Kirtabı, Ankara: Matematikçiler Derneği Yay.
[3] Kilpatrick, J., Swafford, J. O. ve Findell, B. (2001). Adding it up: Helping children learn mathematics. Washington, DC: National Academy Press.
[4] Star, J. R. (2005). Reconceptualizing procedural knowledge. Journal for research in mathematics education, 36(5), 404-411. https://doi.org/10.2307/30034943

Investigating the Impact of Bariatric Surgery on Lipid and Glucose Absorption via Mathematical Modeling

Sedanur Köksal ${ }^{1}$, Vehpi Yıldırım ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences, Erzurum Technical University, Erzurum, Turkey, sedanur.koksal60@erzurum.edu.tr11
${ }^{2}$ Department of Mathematics, Faculty of Sciences, Erzurum Technical University, Erzurum, Turkey, vehpi.yildirim@erzurum.edu.tr

Obesity has become an important public health problem worldwide because it leads to various comorbidities such as type 2 diabetes (T2D), cardiovascular diseases (CVD), insulin resistance, hypertension, high cholesterol, and cancer. The majority of the people who are struggling with obesity can not succeed at losing weight by conventional methods such as diet and exercise. Moreover, subjects usually regain the weights they lose through these conventional methods in the future. The bariatric surgery, which is an effective method for treating patients with obesity, provides significant weight loss, and results in several metabolic ameliorations. In addition to that, studies show that bariatric surgery is more effective at sustaining the weight loss when compared to conventional methods. Roux-en-Y Gastric Baypass (RYGB) surgery is one of the most commonly performed bariatric surgery methods in the World. With this method, due to the reduced stomach volume, the amount of the consumed food is reduced and some of the nutrients are not absorbed. Therefore, RYGB surgery results in significant weight loss in morbidly obese patients and improvements in liver steatosis, sleep apnea, and insulin resistance. In this study, the impact of the anatomical changes that take place after RYGB surgery on the lipid and glucose absorption has been investigated. For this purpose, we developed physiologically based mathematical models of the gastrointestinal tract and utilized clinical data collected from patients that went through RYGB surgery at Amsterdam University Medical Center. The developed mathematical models are shown to be effective at understanding the impact of the surgery on lipid and glucose absorption. Through mathematical modeling, physiological parameter values were estimated for pre- and post-surgical configurations and their differences were analyzed. This way some important metabolic changes that occur as a result of surgeries have been identified.

Keywords: Obesity, Bariatric Surgery, Mathematical Modeling. 2020 Mathematics Subject Classification: Applied Mathematics, Bio-mathematics, Computational Modeling

REFERENCES

Cummings, D. E., Overduin, J. and Foster-Schubert, K. E. 2004. Gastric bypass for obesity: Mechanisms of weight loss and diabetes resolution. Journal of ClinicalEndocrinology and Metabolism, 89(6), 2608-2615.

Qi, L., Guo, Y., Liu, C. Q., Huang, Z. P., Sheng, Y. and Zou, D. J. 2017. Effects of bariatric surgery on glycemic and lipid metabolism, surgical complication and quality of life in adolescents with obesity: a systematic review and meta-analysis. Surgery for Obesity and Related Diseases, 13(12), 2037-2055.

Rogge, M. M. and Gautam, B. 2017. Biology of obesity and weight regain: Implications for clinical practice. Journal of the American Association of Nurse Practitioners, 29, 15-29.

Simonson, D. C., Halperin, F., Foster, K., Vernon, A. and Goldfine, A. B. 2018. Clinical and patient-centered outcomes in obese patients with type 2 diabetes 3 years after randomization to Roux-en- Y gastric bypass surgery versus intensive lifestyle Management: The SLIMM-T2D study. Diabetes Care, 41(4), 670-679.

Tremmel, M., Gerdtham, U. G., Nilsson, P. M. and Saha, S. 2017. Economic burden of obesity: A systematic literature review. International Journal of Environmental Research and Public Health, 14(4), 1-18.

Jacobi Last Multiplier Method for Optimal Growth model with the Environmental Asset

Gülden GÜN POLAT
Gebze Technical University, Department of Mathematics, Gebze, Kocaeli, gunpolat@gtu.edu.tr

This study explores the application of Jacobi last multiplier method to the optimal growth model with the environmental asset. The model is investigated by utilizing the current and present Hamiltonian functions and determining the first-order conditions for optimal control based on Pontryagin's maximum principle. The main idea of the paper is the analysis of two coupled nonlinear first-order ODEs corresponding to first-order conditions. The method of Jacobi last multiplier (JLM) presents a feasible connection with Lie symmetries. Based on this point of view, Lie symmetries of the optimal growth model with the environmental asset are determined then JLM's are found by using the aforementioned connection. Furthermore, the first integrals of the model are obtained via JLM's.

Keywords: Optimal control problem, Prelle-Singer method, Lie symmetries, Jacobi's last multipliers.
2020 Mathematics Subject Classification: 70G65, 65K10, 34A05.

References

[1] M.C. Nucci, Jacobi Last Multiplier and Lie symmetries: A Novel Application of an Old Relationship, J. Nonlinear Math. Phys. 12(2), 284-304, 2005.
[2] R. J. Barro and X. Sala-i-Martin, Economic growth, (Cambridge, The MIT press, 2004).
[3] R. Naz, F.M. Mahomed, A. Chaudhry, A partial Hamiltonian approach for current value Hamiltonian systems, Commun. Nonlinear Sci. Numer. Simulat., 19(10), 3600-3610, 2014.
[4] G. Gün Polat and T. Özer, The group-theoretical analysis of nonlinear optimal control problems with Hamiltonian formalism, J. Nonlinear Math. Phys., 27, 106-129, 2020.
[5] G. Gün Polat and T. Özer, On Ramsey dynamical model and closed form solutions, Journal of Nonlinear Mathematical Physics, 28(2), 209-218, 2021.

A pointwise Carleman inequality for the general ultrahyperbolic Schrödinger equation

Özlem Kaytmaz ${ }^{1}$
${ }^{1}$ Department of Mathematics, Zonguldak Bülent Ecevit University, Zonguldak, Turkey, ozlem.kaytmaz@beun.edu.tr

In this work, we establish a pointwise Carleman inequality for the general ultrahyperbolic Schrödinger equation. The proof is based on the method presented in Amirov [1], Klibanov and Timonov [5] and Lavrentiev et al [6]. A Carleman estimate is a L^{2}-weighted estimate which was first introduced by Torsten Carleman in 1939 as a tool for proving the unique continuation property for elliptic equations.

It is known that classical Schrödinger equation is the master equation in quantum kinetic theory. The Carleman estimates for this equation were obtained by $[3,4,7]$ and used for investigation of uniqueness and stability of the solution of the inverse problem.

Here we consider the generalized form of classical Schrödinger equation which is called ultrahyperbolic Schrödinger equation. These equations arise in several applications, for example in water wave problems, $[2,9]$, in higher dimensions as completely integrable models, see [8]. The obtained inequality in this work can be used to prove the uniqueness and stability results for related direct and inverse problems.

Keywords: Ultrahyperbolic Schrödinger equation, pointwise Carleman inequality, Cauchy problem.
2020 Mathematics Subject Classification: 35Q40, 35Q41, 35R45.

References

[1] A. Amirov, Integral Geometry and Inverse Problem for Kinetik Equations. VSP, Utrecht The Netherlands, 2001.
[2] A. Davey, K. Stewartson, On three-dimensional packets of surface waves, Procceedings of the Royal Society of London A: Physical and Engineering Sciences, 338, 101-110, 1974.
[3] A. Mercado, A. Osses and L. Rosier, Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights, Inverse Problem, 24, 015017, 2008.
[4] G. Yuan and M. Yamamoto, Carleman estimates for the Schrödinger equation and applications to an inverse problem and an observability inequality, Chinese Annals of Mathematics, Series B, 31(4), 555-578, 2010.
[5] M. V. Klibanov and A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications. VSP,

Utrecht The Netherlands, 2004.
[6] M. M. Lavrentiev, V. G. Romanov and S. P. Shishatskii, Ill-Posed Problems of Mathematical Physics and Analysis. AMS,

Providence, 1986.
[7] L. Baudouin and J. P. Puel, Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Problem, 18, 1537, 2002.
[8] M. J. Ablowitz and R. Haberman, Nonlinear evolution equations in two and three dimensions, Physical Review Letters, 35, 1185, 1975.
[9] V. E. Zakharov and E. A. Kuznetsov, Multi-scale expansions in the theory of systems integrable by the inverse scattering transform, Physica D: Nonlinear Phenomena, 18, 455-463, 1986.

An approach to the Diophantine equations with integer sequences

Abdullah Çağman ${ }^{1}$
${ }^{1}$ Ağrı İbrahim Çeçen University Department of Mathematics 04100 Ağrı Turkey, acagman@agri.edu.tr

In this paper, we find all repdigits which can be expressed as the sum of some integer sequences. To prove our main result, we use the combined approach of lower bounds for linear forms in logarithms of algebraic numbers and a version of the Baker Davenport reduction method.
Keywords: Repdigit, integer sequence, Diophantine equation, Baker's theory. 2020 Mathematics Subject Classification: 11B37; 11D45; 11J86.

References

[1] Eugene M Matveev. An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. ii. Izvestiya: Mathematics, 64(6):1217, 2000.
[2] Andrej Dujella and Attila Petho. A generalization of a theorem of baker and davenport. The Quarterly Journal of Mathematics, 49(195):291-306, 1998.
[3] Zafer Siar, Fatih Erduvan, and Refik Keskin. Repdigits as products of two Pell or PellLucas Numbers. Acta Mathematica Universitatis Comenianae, 88(2):247-256, 2019.
[4] Mahadi Ddamulira. Repdigits as sums of three Padovan numbers. Boletín de la Sociedad Matemática Mexicana, pages 1-15, 2019.
[5] Florian Luca. Repdigits as sums of three Fibonacci numbers. Mathematical Communications, 17(1):1-11, 2012.

Fekete-Szegö problem for a subclass of bi-univalent functions associated with Gegenbauer polynomials

Murat Çağlar ${ }^{1}$, Mucahit Buyankara ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Erzurum Technical University, Erzurum, Türkiye, e-mail: mcaglar25@gmail.com
${ }^{2}$ Vocational School of Social Sciences, Bingöl University, Bingöl, Türkiye, e-mail: mbuyankara@bingol.edu.tr

In this paper, we introduce and investigate a new subclass of bi-univalent functions defined in the open unit disk, which are associated with the Gegenbauer polynomials. Furthermore, we find estimates for the Taylor-Maclaurin coefficients $\left|a_{2}\right|,\left|a_{3}\right|$ and Fekete-Szegö inequality $\left|a_{3}-\mu a_{2}^{2}\right|$ for functions in this new subclass.

Keywords: Bi-univalent functions, Fekete-Szegö problem, Gegenbauer polynomials.
2020 Mathematics Subject Classification: 30C45, 30C50.

References

[1] T. Abdeljawad A. Amourah, B. A. Frasin. Fekete-szegö inequality for analytic and bi-univalent functions subordinate to gegenbauer polynomials. J. Funct. Spaces, 2021(5574673):1-7, 2021.
[2] M. Çağlar H. Orhan, N. Yağmur. Coefficient bounds for new subclasses of bi-univalent functions. Filomat, 27(7):1165-1171, 2013.
[3] P. L. Duren. Univalent Functions. Springer, New York, NY, 1983.
[4] S. H. Rim D. S. Kim, T. Kim. Some identities involving gegenbauer polynomials. Adv. Differ. Equ., 2012(219):1-11, 2012.

Bibliometric Analysis of Scientific Studies on "Noticing Skill" in Mathematics Education

Ercan DEDE ${ }^{1}$,Ali Ercan ÖZDEMİR ${ }^{2}$
${ }^{1}$ Matematik ve Fen Bilimleri Eğitimi Bölümü, Eğitim Fakültesi, Recep Tayyip Erdoğan
Üniversitesi, Rize, Türkiye, e-mail:ercan.dede@erdogan.edu.tr
${ }^{2}$ Matematik ve Fen Bilimleri Eğitimi Bölümü, Eğitim Fakültesi, Recep Tayyip Erdoğan
Üniversitesi, Rize, Türkiye, e-mail: ercan.ozdemir@erdogan.edu.tr

The systematic evaluation of articles published in academic journals is useful for examining the current status of mathematics education research and identifying future trends [1]. Bibliometrics deals with the statistical analysis of scientific studies, data such as author, subject, cited author, cited sources, and makes it possible to reveal the general structure of a particular discipline in line with the statistical results obtained. These methods have the potential to deliver systematic, transparent and reproducible research, thereby improving the quality of research. Bibliometric methods direct the researcher to the most influential publications [3]. In this study, a bibliometric analysis of published scientific studies on the ability to notice was made. 128 publications with SSCI index were examined from the WoS database. According to the findings, the most broadcasting countries are "United States of America", "Turkey" and "Germany"; the most published journals are "journal of mathematics teacher education", "international journal of science and mathematics education" and "zdm-mathematics education"; It has been seen that the universities with the most publications are "Hamburg University", "Michigan State University" and "Northwestern University". In addition, the cognitive structure related to the ability to notice was revealed and presented visually.
Keywords:Bibliometric Analysis, Noticing, Mathematics Education

References

[1] Ulutaş, F., Ubuz, B. (2008). Matematik eğitiminde araştırmalar ve eğilimler: 2000 ile 2006 yılları arası. İlköğretim Online, 7(3), 614-626. Ankara: MEB Yayınları.
[2] Zupic, I., Cater, T. (2015) Bibliometric methods in management and organization. Organizational Research Methods, 18(3), 429-472, doi:10.1177/1094428114562629

Hill-type estimator of the tail index for randomly censored heavy-tailed data: Application to the estimation of the mean

Nour Elhouda Guesmia ${ }^{1}$
${ }^{1}$ Laboratory of Applied Mathematics, Mohamed Khider University, Biskra, Algeria, e-mail: guesmiahouda1994@gmail.com

Text of the abstract
The most popular extreme value index estimator is the Hill estimator which was introduced in 1975. In this paper, under survival and extreme value theories, we use the estimation of Weissman type of the extreme quantiles for random censorship to present another formula for the mean estimator based on Hill estimator and we construct the bootstrap percentile confidence intervals for this estimator. Finally we apply our results to a real dataset of insurance losses.

Keywords: Hill estimator, Extreme value, Random censoring. 2020 Mathematics Subject Classification: 62G32, 62N02, 62P05.

References

[Hill(1975)]
Hill, B. M. (1975). Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution. The annals of statistics, 1163-1174.
[Kaplan and Meier(1958)] Kaplan, E. L., \& Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American statistical association, 53(282), 457481.
[Reiss and Thomas(1997)] Reiss, R.D., \& Thomas, M., (1997). Statistical Analysis of Extreme Values, with Applications to Insurance, Finance, Hydrology and Other Fields. (Vol. 2). Basel: Birkhäuser.
[Soltane et al.(2015)] Soltane, L., Meraghni, J., \& Necir, A. (2015). Estimating the mean of a heavy-tailed distribution under random censoring. Preprint arXiv:1507.03178.

Reflections of Developed Problem Posing Based Active Learning Activities in the Teaching Process: Example of Fractions

Hatice Polat ${ }^{1}$, Merve Özkaya ${ }^{2}$
${ }^{1}$ Elementary Mathematics Education, Faculty of Education, Ataturk University, Erzurum,
Turkey, hatice.polat.2500@gmail.com
${ }^{2}$ Elementary Mathematics Education, Faculty of Education, Ataturk University, Erzurum, Turkey, mdurkaya@atauni.edu.tr

Abstract

The aim of this study is to develop problem posing based active learning activities for sixth grade students on operations with fractions and to reveal the reflections of these activities in the teaching process. The study group of the research consists of 48 sixth grade students, 23 of whom are in the experimental group and 25 in the control group, studying in a secondary school in Ağrı. While problem posing based active learning activities developed by the researchers were carried out in the experimental group, a teaching program suitable for the learning outcomes was carried out in the control group. Seven problem posing based active learning activities were applied to the students in the experimental group for a total of 21 lesson hours for six weeks. Data were collected with a motivation scale and semi-structured interviews. Independent samples t-test was used to analyze the data obtained from the motivation scale. The interviews with six randomly selected students from the experimental group were audio recorded and the audio recordings were analyzed. Although the mean scores of the experimental group from the motivation scale were not significant $[\mathrm{t}(46)=0.345, \mathrm{p}>0.05]$, it was higher than the control group. In the interviews, findings were obtained that the students' interest in mathematics increased after problem posing based active learning activities, their anxiety about fractions decreased, they found the activities useful, and they developed the habit of problem posing in and out of the classroom after the activity In the light of the findings, it was concluded that problem posing based active learning activities had positive reflections in the teaching process. This result is in line with the results of the research that mentions the positive contribution of problem posing activities to students' affective characteristics [1,2]. It has been determined that these activities are applicable and can be used in teaching.

Keywords: Problem posing, active learning, motivation..

References

[1] A. Cetinkaya, D. Soybaș. An investigation of problem posing skills of elementary scholl 8th grade students. Journal of Theoretical Educational Science, 11 (1): 169-200, 2018.
[2] R. Güzel, A. Ç. Biber. The effect of the problem posing approach for academic success in the teaching of inequalities. Kastamonu Education Journal, 27 (1): 199-208, 2019

Receiving Student Opinions Within The Scope of Geometry Lessons Taught Using Activities Regarding Different Demonstration-Performance Methods

Esra Altıntaş ${ }^{1}$,Şükrü İlgün ${ }^{2}$,Sümeyye Güneş ${ }^{3}$
${ }^{1}$ Matematik ve Fen Bilimleri Eğitimi Bölümü, Matematik Eğitimi Anabilim Dalı, Dede Korkut Eğitim Fakültesi, Kafkas Üniversitesi, Kars e-mail:esra.altintas@kafkas.edu.tr
${ }^{2}$ Matematik ve Fen Bilimleri Eğitimi Bölümü, Matematik Eğitimi Anabilim Dalı, Dede Korkut Eğitim Fakültesi, Kafkas Üniversitesi, Kars, e-mail: mat.ilgun@hotmail.com
${ }^{3}$ Öğretmen, Milli Eğitim Iğdır, e-mail: sumeyyeaziti@gmail.com

The present research was carried out in order to get the opinions of the 7 th grade students of the secondary school within the scope of geometry lessons taught by using different demonstration-performance methods in geometry teaching. In the research, the case study method, one of the qualitative research approaches, was used within the scope of taking the views of the students about the geometry lessons taught with the activities using the compass-ruler and origami methods. A semi-structured interview form was applied by the researcher to get students' opinions about the activities made. It can be stated as a result of this study that the activities contributed to the students' understanding of the basics of geometry, their learning with a constructivist approach by assimilating geometry, and the development of their geometry thinking skills.
Keywords:Geometry teaching, Demonstration-Performance Method, CompassStraightedge, Origam

References

[1] Arı, K., Çavuş, H. ve Sağlık, N. (2010). İlköğretim 6. sınıflarda geometrik kavramların öğretiminde etkinlik temelli öğrenimin öğrenci başarısına etkisi. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 27, 99-112.
[2] Baysal, E. ve Gürefe, N. (2019). Lise öğrencilerinin geometrik yapı metinlerini okuma anlayışlarının değerlendirilmesi; kare örneği. Gazi Üniversitesi Eğitim Fakültesi Dergisi, 39(3), 1381-1420.

Examining Secondary School 7th Grade Mathematics Activities within the Scope of Harezmian Education Model and Obtaining Students' Opinions

Esra Altıntaş ${ }^{1}$, ,Şukrü İlgün ${ }^{2}$,Sümeyye Güness ${ }^{3}$
${ }^{1}$ Matematik ve Fen Bilimleri Eğitimi Bölümü, Matematik Eğitimi Anabilim Dalı, Dede Korkut Eğitim Fakültesi, Kafkas Üniversitesi, Kars e-mail:esra.altintas@kafkas.edu.tr
${ }^{2}$ Matematik ve Fen Bilimleri Eğitimi Bölümü, Matematik Eğitimi Anabilim Dalı, Dede Korkut Eğitim Fakültesi, Kafkas Üniversitesi, Kars, e-mail: mat.ilgun@hotmail.com ${ }^{3}$ Öğretmen, Milli Eğitim Iğdır, e-mail: sumeyyeaziti@gmail.com

The present research was carried out in order to examine the activities carried out within the scope of the model for 7 th graders and to get the opinions of the students in 2 schools where the Harezmian Education Model (HEM) was applied in the province of Iğdır. In the research, a case study, one of the qualitative research methods, was applied to examine the mathematics activities in the lessons in which HEM was applied. HEM practice lessons were observed by the researcher, a semi-structured interview form was applied to get students' opinions about HEM mathematics applications after the lesson, and the obtained data were interpreted using content analysis method. It can be stated as a result of this study that the majority of students' views on HEM are positive, studies are carried out in accordance with the goal that the model wants to achieve, and it contributes to the students' approach to the problems in their daily lives with mathematical thinking skills by eliminating their prejudices against the mathematics course in which they develop negative attitudes. It is thought that the next studies will be guided by giving place to sample plans, practices and activities related to the process of HEM practice courses in the research.
Keywords:Harezmian Education Model, mathematics education, student views

References

[1] Didiş-Kabar, M. G. (2018). Matematik öğretmen adaylarının matematiğin günlük hayat ile ilişkisi hakkındaki algı ve görüģlerinin incelenmesi. İnönü Üniversitesi Eğitim Fakültesi Dergisi, 19(3), 266-283.
[2] Ceylan, Ö., Öğten, M., Tüfekçi, V. ve Özsevimli Yurttaş, M. (2020). Ögrencilerin harezmi eğitim modeline yönelik metaforik algılarının belirlenmesi. Millî Eğitim Dergisi, 49(225), 227-251.

A new primal-dual interior-point algorithm for linear programming

Derbal Louiza ${ }^{1}$, Kebbiche Zakia ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences, University of Ferhat AbbasSetif1, City Maabouda, Country Algeria, louiza.derbal@univ-setif.dz
${ }^{2}$ Department of Mathematics, Faculty of Sciences, University of Ferhat AbbasSetif1, City Maabouda, Country Algeria, kebbichez@yahoo.fr

The propose of this paper is to improve the complexity results of primal-dual interior-point methods for linear optimization (LO) problem. We define a new proximity function for (LO) by a new kernel function wich is a combination of the classic kernel function and a barrier term. We present various proprieties of this new kernel function. Futhermore, we formilate an algorithm for a large-update primal-dual interior-point method (IPM) for (LO). It is shown that the iteration bound for large-update and smal-update primal-dual interior points methods based on this function is a good as the currently best know iteration bounds for these type of methods. We show that the best result of iteration bounds for large-update methods can be achieved, namely $\mathcal{O}\left(q \sqrt{n}(\log \sqrt{n})^{\frac{q+1}{q}} \log \frac{n}{\epsilon}\right)$ With a special choice of the parameter q, the iteration complexity becames

$$
\mathcal{O}\left(\sqrt{n} \log n \log \frac{n}{\epsilon}\right)
$$

and for small-update methods is

$$
\mathcal{O}\left(q^{\frac{3}{2}}(\log \sqrt{q})^{\frac{q+1}{q}} \sqrt{n} \log \frac{n}{\epsilon}\right) .
$$

This result decreases the gap between the practical behaviour of the large-update algorithms and their theoretical performance, which is an open problem. The primal-dual algorithm is implemented with different choices of the step size.

Numerical results show that the algorithm with practical and dynamic step sizes is more efficient than that with fixed (theoretical) step size.

Keywords: Kernel function, Interior point algorithms, Linear optimization, Complexity bound, Primal-dual methods.
2020 Mathematics Subject Classification : 90C05, 90C51.

References

[1] Y.Q. Bai, M El. Ghami, C. Roos, A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization, SIAM Journal on Optimization 15 (1) (2004) 101-128.
[2] Derbal, L., Kebbiche, Z. Theoretical and numerical result for linear optimization. Journal of Siberian Federal University. Mathematics \& Physics, 12(2): 160-172 (2019).
[3] J. Peng, C. Roos, T. Terlaky, Self-Regularity: A New Paradigm for PrimalDual Interior-Point Algorithms, Princeton University Press, 2002.
[4] C. Roos, T. Terlaky, J.-Ph. Vial, Theory and Algorithms for Linear Optimization. An Interior-Point Approach, John Wiley \& Sons, Chichester, UK, 1997.

FULL TEXTS

Comparative Theoretical and Practical Study Of Some Imaging Algorithm.

Soulef BOUGUEROUA ${ }^{1}$, Noureddine DAILI ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences, University F. ABBAS Setif 1. 19000 , Setif, Algeria, bouguerouasoulef@yahoo.com
${ }^{1}$ Department of Mathematics, Faculty of Sciences, University F. ABBAS Setif 1. 19000 , Setif, Algeria, nourreddine.daili@univ-setif.dz

Image restoration is an interesting ill-posed problem. It has a crucial importance in the notion of image processing. We seek to recover an image close to the original image from images disturbed by additive white Gaussian noise. There are many denoising algorithms, in this work we compare the theoretical and numerical results obtained by Tykhonov Regularization, ROF and split Bregman algorithm Anisotropic TV, Isotropic TV in terms of image quality and convergence. Based on the results obtained, we can conclude that the Anisotropic TV denoising and Isotropic TV denoising algorithms work with a direct correlation relationship, the algorithms converge monotonically, Isotropic TV denoising is faster than Anisotropic. Therefore, the results obtained by the ROF algorithm give better high quality denoised image results than the Tykhonov algorithm because the image restored by Tykhonov is too smooth, the edges are eroded. The experimental results show that the methods not only provide better visual resolution, but it can also remove the additive Gaussian noise. We obtain satisfactory results, and we calculate the SNR of each algorithm.

Keywords: Algorithms, Image Restoration, Numerical analysis.
2020 Mathematics Subject Classification: Primary 65D15, Secondary 65K05, 65A05.

1 Introduction

The fundamentally erroneous nature of some practical situations is recognized, and it manifests itself in a vast category of problems known as "inverse problems." There are many different sorts of ill posed inverse problems, and they can be found in a variety of fields, such as image processing.

One of the most important aspects of machine learning or computer vision is digital image processing. The restoration of deteriorated photographs is an intriguing subject in digital image processing. During the acquisition of a picture
(particularly through photography), it is common for the final image to diverge from the expected image. Debruiting is the converse problem of eliminating noise from an image; the result would be poor if noise was not removed from the image. Brièvement, Noise is parasitic information that is added to the scene at random. Noise is diverse in nature and origin, thus it can be simulated in a variety of ways. There are various types of noise; the Gaussian additive noise is the case study in this article: $f=u+v$, with f representing the observed noisy image, u representing the original image, and v representing Gaussian random variation to zero mean. In a predetermined density function, Gaussian noise is also known as normal noise. It's a popular way to add noise to an image. This noise can be generated in the image at random and individually, as defined by the following.

$$
\begin{equation*}
p(z)=\frac{1}{\sqrt{2 \pi \sigma}} e^{-(z-\bar{z})^{2 / 2 \sigma^{2}}} \tag{1}
\end{equation*}
$$

where z stands for intensity, \bar{z} represents the mean value of z, and σ stands for standard deviation. As seen in Fig. 1, this function can be visualized.

Figure 1: Gaussian Noise

De-escalation techniques are required to restore the image to a higher visual quality. This article will address the investigation of various image restoration models with Gaussian noises.

2 Comparative Studies of Some Algorithms In Image Processing.

Image representation is a technique for repairing or degrading an image while lowering the amount of noise it contains.

We will discuss some image restore models that will be used in the experiment in the sections below.

2.1 Tychonov regularization

One commance by the first model which most encient model of Tychonov Regularization. This model uses the functional space of Sobolev $H_{0}^{1}(\Omega)$ which is a separable Hilbert space.

Space $H_{0}^{1}(\Omega)$ is equipped with the scalar product induced by H^{1} :

$$
\begin{equation*}
\|u\|_{H^{1}}=\|u\|_{L^{2}}+\left\|u^{\prime}\right\|_{L^{2}} \tag{2}
\end{equation*}
$$

Tychonov regularization this is a very conventional but too basic regularization process for image processing. We try to reconstruct or restore the image u, if we assume that the additive noise v is gaussian and f is the observed image.

Let $V=H_{0}^{1}(\Omega)$ et $H=L^{2}(\Omega)$, We consider the original minimisation problem (adjustment to the data):

$$
\begin{equation*}
\text { (p) } \quad \min _{u \in V}\|u-f\|_{H}^{2} \tag{3}
\end{equation*}
$$

where $f: \Omega \subset \mathbb{R}^{N} \longrightarrow R$ is the observed image and the following regularized problem: for any $\alpha>0$

$$
\begin{equation*}
\left(p_{\alpha}\right) \quad \min _{u \in V}\left\{\|u-f\|_{H}^{2}+\alpha\|\nabla u\|_{H}^{2}\right\} \tag{4}
\end{equation*}
$$

We only want to adjust u to the data f, but we also impose that the gradient is "quite small" (it depends on the parameter). An image with a small gradient is "smoothed". The edges are eroded and the restore will give a blurred image.

Theorem 2.1 Assume that (P) requires at least one answer \breve{u}. The problem $\left(P_{\alpha}\right)$ requires a one-of-a-kind solution u_{α}. When $\alpha \rightarrow 0$, one can extract a sub-suite from the family $\left(u_{\alpha}\right)$ that converges (possibly) in V to a solution u^{*} of (P).

The traditional phrase for image restoration, $L(u)=\|\nabla u\|_{2}^{2}$ (Tychonov regularization), is incompatible with the problem of image restoration: the image restored u is much too lissée (in particular, the edges are eroded). Consider the total variation, that is, take $L(u)=\int|D u|$. This is a far more effective approach. This results in a functional minimization in a specific Banach space, which is well suited to the problem of variation-based function spaces.

2.2 Model Rudin -Osher-Fatemi (ROF)

Rudin Osher and Fatemi ($R O F$) , proposed the first image resetting model from a given noisy image having additive noise using regularization (TV) which defines by :

$$
\begin{equation*}
T V(u(x, y))=_{\Omega}|\nabla u(x, u)| d x d y \text { avec }|\nabla u|=\sqrt{u_{x}^{2}+u_{y}^{2}} \tag{5}
\end{equation*}
$$

To remove noise from digital images, the method of regularization of total variation (TV) of image processing is used. It is the only regularization that
is used to preserve the image's borders and eliminate the image's frequently bruyant components. ($T V$) is a technique created by Rudin- Osher and Fatemi to solve the problem of image degradation. Since then, it has been applied to a variety of other image problems.

In (3), a model has been proposed by Rudin-Osher-Fatemi. In which the image is divided into two parts: $f=u+v$, where v is the noise and u is the "regular" half, u is an unknown image, and f is a bruyant measure typical at the start of a clean image and is an agreement parameter. So, using the $u+v$ formula with $u \in B V(\Omega)$ et $v \in L^{2}(\Omega)$, we'll look for a solution to the problem and only apply the regularization to the "bruit" section. If $f \in L^{2}$ is correct, then the minimizer u exists, is unique, and stable in L^{2}, and the $R O F$ problem is well-posed.

ROF proposed the following minimization problem:
$\left(\mathrm{P}_{\text {ROF }}\right) \quad \inf _{u}\left\{J(u)+\frac{1}{2 \lambda}\|v\|_{2}^{2} / u \in B V(\Omega), v \in L^{2}(\Omega), f=u+v\right\}$
This results in a $\left[B V(\Omega), L^{2}(\Omega)\right]$ decomposition of the image f.
$J(u)$ denotes the total variance of u and $\lambda>0$.

$$
\begin{equation*}
J(u)=\sup \left\{\int_{\Omega} u(x) \operatorname{div}(\varphi(x)) d x: \varphi \in C_{c}^{1}\left(\Omega, \mathbb{R}^{2}\right),\|\varphi\|_{\infty} \leq 1\right\} \tag{6}
\end{equation*}
$$

And $B V$, is Borne Variable Function Space, as defined by:

$$
\begin{equation*}
B V(\Omega)=\left\{u \in L^{1}(\Omega), J(u)<+\infty\right\} \tag{7}
\end{equation*}
$$

Here $J(u)$ denotes the $T V$ of u and $\lambda>0$ is a weight parameter. $B V$ is a space of bounded variation functions (the space of all images at $T V$).

Theorem 2.2 (3), The problem $\left(P_{R O F}\right)$ requires a single solution, which is provided by

$$
\begin{equation*}
u=f-\lambda \Pi_{\lambda K}(f) \tag{8}
\end{equation*}
$$

where Π is the orthogonal projector on λK (dilatation of K by λ), and K is the overall closure in L^{2} :

$$
\begin{equation*}
K:=\left\{\operatorname{div}(\varphi) / \varphi \in C_{c}^{1}\left(\Omega, \mathbb{R}^{2}\right),\|\varphi\|_{\infty} \leq 1\right\} \tag{9}
\end{equation*}
$$

2.3 Bregman Algorithm

Bregman's iterative technique was first introduced and studied in the field of image processing by Osher et al (10). Osher, Burger, Goldfarb, Xu, and Yin proposed the iterative Bregman algorithm as an effective algorithm for solving optimization problems (6). Their main ideas were to first transform a constraint optimization problem into a constraint-free problem using the Bregman distance. This problem-solving algorithm is as follows:

$$
\begin{equation*}
\min _{u}\{z(u)+H(u, f)\} \tag{10}
\end{equation*}
$$

such that $z: X \longrightarrow \mathbb{R}, H: X \longrightarrow \mathbb{R}$ are non-negative convex functions of $u \in X$, and $H(u, f)$ is a smooth non-negative convex function in relation to u for a given f, and X is a closed convex set.

Bregman's iterative algorithm is defined as follows by Osher, Burger, Goldfarb, Xu, and Yin: Bregman Iterative Algorithm

- Initialize: : $k=0, u_{0}=0, p_{0}=0$.
- while " u^{k} not converge " $u^{k+1} \leftarrow \arg \min D_{z}^{P^{k}}\left(u, u^{k}\right)+H(u)$
- $p^{k+1} \leftarrow p^{k}-\nabla H\left(u^{k+1}\right) \in \partial z\left(u^{k+1}\right)$
- $k \leftarrow k+1$
- End while

2.3.1 The Convergence Theorem

For the first time in (10), this variant of Bregman was presented for TVbased image rendering. Other features of this iterative Bregman scheme, as well as a convergence analysis, have been proven in detail in ((10), (11), and (5). $u^{1}=u \min (z(u)+H(u))$ is the first iteration of this method.

The residual term must be minimal to solve the initial problem; once the residual term converges, the Bregman iterative algorithm continues. Because of its excellent convergence features, the Bregman iterative algorithm has been applied to a variety of issues, including badly posed problems and picture dissection. Among these qualities are: with noisy data, we can achieve convergence to the original image we're seeking to recover, as well as convergence in terms of distance from Bregman to the original image, and a monotonous decline in the residual term. We have $z(u)=\|u\|_{B V}$ where $\|\nabla u\|_{1}$ and $H(u)=\frac{1}{2}\|u-f\|_{2}^{2}$ learned a lot about image redaction during our research.

2.4 Algorithm of Bregman Splitting

Goldstein and Osher first proposed the Split Bregman algorithm in (9) to handle more general form optimization problems:

$$
\begin{equation*}
\min _{u \in X}\left(H(u)+\|\Phi(u)\|_{1}\right), \tag{11}
\end{equation*}
$$

where X is a closed convex set, and $\Phi: X \longrightarrow \mathbb{R}, H: X \longrightarrow \mathbb{R}$ are convex functions. This problem is the same as the stress minimization problem below:

$$
\begin{equation*}
\left.\min _{u \in X, d \in \mathbb{R}}(H(u)+\| d) \|_{1}\right) \text { such that } d=\Phi(u) . \tag{12}
\end{equation*}
$$

Goldstein and Osher introduced the Split Bregman algorithm, which was written as follows: Algorithm of Bregman Splitting

- Initialization : $k=0, u^{0}=0, b^{0}=0$
- As long as $\left\|u^{k}-u^{k-1}\right\|>$ tol do
- $u^{k+1}=\min _{u} H(u)+\frac{\lambda}{2}\left\|d^{k}-\Phi(u)-b^{k}\right\|_{2}^{2}$
- $d^{k+1}=\min _{d}|d|+\frac{\lambda}{2}\left\|d-\Phi\left(u^{k+1}\right)-b^{k}\right\|_{2}^{2}$
- $b^{k+1}=b^{k}+\left(\Phi\left(u^{k+1}\right)-d^{k+1}\right)$
- $k=k+1$
- End as long as

The Split Bregman algorithm is used to solve some of the most common form optimization problems:

$$
\begin{equation*}
\min _{u \in X}\left(z(u)+\frac{1}{2}\|u-f\|_{2}^{2}\right) \tag{13}
\end{equation*}
$$

Anisotropic and isotropic TV disconnection problems are solved using the Split Bregman method.

2.4.1 Denoising Anisotropic TV

The problem of anisotropic TV Denoising is considered in (5)
$\min _{u}\left(\left\|\frac{\partial u}{\partial x}\right\|_{1}+\left\|\frac{\partial u}{\partial y}\right\|_{1}+\frac{\mu}{2}\|u-f\|_{2}^{2}\right), \quad\left(\mathrm{P}_{1}\right)$
where f is the noisy image, $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ will be noted by u_{y} and u_{x} respectively. The problem is solved using a constraint equivalent to a problem ($P 1$) We answer the problem (P2) as follows:

$$
\left\{\begin{array}{l}
\min _{u}\left(\left\|d_{x}\right\|_{1}+\left\|d_{y}\right\|_{1}+\frac{\mu}{2}\|u-f\|_{2}^{2}\right) \tag{2}\\
\text { with } \quad d_{x}=u_{x}, d_{y}=u_{y}
\end{array}\right.
$$

The Split Bregman algorithm can be used to tackle this last problem.

$$
\begin{equation*}
\min _{u, d_{x}, d_{y}}\left(\left\|d_{x}\right\|_{1}+\left\|d_{y}\right\|_{1}+\frac{\mu}{2}\|u-f\|_{2}^{2}+\frac{\lambda}{2}\left\|d_{x}-u_{x}\right\|_{2}^{2}+\frac{\lambda}{2}\left\|d_{y}-u_{y}\right\|_{2}^{2}\right) . \tag{3}
\end{equation*}
$$

We establish

$$
\operatorname{shrink}(x, a)= \begin{cases}x-a & \text { if } x>a \tag{14}\\ x+a & \text { if } x<a \\ 0 & \text { else }\end{cases}
$$

The Gauss Seidel function is also useful

$$
\begin{align*}
G_{i, j}^{k}=\frac{\lambda}{\mu+4 \lambda} & \left(u_{i+1, j}^{k}+u_{i-1, j}^{k}+u_{i, j+1}^{k}+u_{i, j-1}^{k}+d_{x, i-1, j}^{k}+d_{x, i, j}^{k}\right. \\
& \left.+d_{y, i, j-1}^{k}+d_{y, i, j}^{k}+b_{x, i-1, j}^{k}+b_{x, i, j}^{k}+b_{y, i, j-1}^{k}+b_{y, i, j}^{k}\right)+\frac{\mu}{\mu+4 \lambda} f_{i, j} . \tag{15}
\end{align*}
$$

The Split Bregman algorithm of denoising Anisotropic TV Sound Effects:

- Initialization: : $k=0, u^{0}=0, b^{0}=0$
- As long as $\left\|u^{k}-u^{k-1}\right\|>t o l$ do
- $u^{k+1}=G^{k}$ où G is the Gauss-Seidel function
- $d_{x}^{k+1}=\operatorname{shrink}\left(\nabla_{x} u^{k+1}+b_{x}^{k}, \frac{1}{\lambda}\right)$
- $d_{y}^{k+1}=\operatorname{shrink}\left(\nabla_{y} u^{k+1}+b_{y}^{k}, \frac{1}{\lambda}\right)$
- $b_{x}^{k+1}=b_{x}^{k}\left(\nabla_{x} u^{k+1}-d_{x}^{k+1}\right)$
- $b_{y}^{k+1}=b_{y}^{k}\left(\nabla_{y} u^{k+1}-d_{y}^{k+1}\right)$
- $k=k+1$
- End as long as

2.4.2 Denoising Isotropic TV

The problem of Isotropic TV denoising is considered in (5)
$\min _{u}\|\nabla u\|_{2}+\frac{\mu}{2}\|u-f\|_{2}^{2} . \quad\left(\mathrm{P}_{1}^{\prime}\right)$
The problem is solved using a constraint equivalent to a problem $\left(P_{2}^{\prime}\right)$
$\left\{\begin{array}{l}\min _{u}\left(\left\|\left(d_{x}, d_{y}\right)\right\|_{2}+\frac{\mu}{2}\|u-f\|_{2}^{2}\right) \\ \text { with } \quad d_{x}=u_{x}, d_{y}=u_{y} .\end{array} \quad\left(\mathrm{P}_{2}^{\prime}\right)\right.$
To solve the problem $\left(P_{2}^{\prime}\right)$, we solve the following problem without constraint:

$$
\min _{u, d_{x}, d_{y}}\left(\left\|\left(d_{x}, d_{y}\right)\right\|_{2}+\frac{\mu}{2}\|u-f\|_{2}^{2}+\frac{\lambda}{2}\left\|d_{x}-u_{x}\right\|_{2}^{2}+\frac{\lambda}{2}\left\|d_{y}-u_{y}\right\|_{2}^{2}\right)
$$

The Split Bregman algorithm can be used to tackle this last difficulty.
We give the following definition: $\mathrm{s}^{k}:=\sqrt{\left|u_{x}^{k}-b_{x}^{k}\right|^{2}+\left|u^{k}-b_{y}^{k}\right|^{2}}$.
The Split Bregman algorithm of denoising Isotropic TV Sound Effects:

- Initialization: $k=0, u^{0}=0, b^{0}=0$
- As long as $\left\|u^{k}-u^{k+1}\right\|>t o l$ do
- $u^{k+1}=G^{k}$ où G is the Gauss-Seidel function
- $d_{x}^{k+1}=\frac{s^{k} \lambda\left(u_{x}^{k}+b_{x}^{k}\right)}{s^{k} \lambda+1}$
- $d_{y}^{k+1}=\frac{s^{k} \lambda\left(u_{y}^{k}+b_{y}^{k}\right)}{s^{k} \lambda+1}$
- $b_{x}^{k+1}=b_{x}^{k}+\left(u_{x}^{k+1}-d_{x}^{k+1}\right)$
- $b_{y}^{k+1}=b_{y}^{k}+\left(u_{y}^{k+1}-b_{y}^{k+1}\right)$
- $k=k+1$
- End as long as

3 Numerical Results

Let X be a representation of an " University" original image. We defined our noisy image f using the Matlab command $f=$ imnoise (X,' gaussian', segma) where segma is a variant of the Gaussian noise level. For our experiments, We used the values $\mu=0.1, \lambda=0.2$ and the tolerance $T o l=10^{-3}$. Also the
figures $(2 ; 4)$ illustrate that the original image and noisy image for different segma values: 0.08 and 0.35 and the
figures $(3 ; 5)$ illustrate that the different algorithms applied to restoration image using: Tychonov regularization ,the modele ROF , Isotropic TV denoising algorithm and Anisotropic TV denoising algorithm for "University" image for different segma values. In Tables 1 and 2, we show the results for the Anisotropic TV and Isotropic TV denoising algorithms for image "University", and different values segma. The relative error is measured by : $\|u-X\|_{2}^{2}$, we also note number of iteration, relative error and time. In Tables 3, we show The different values of SNR of denosed image by: Tychonov regularization, the model ROF, the Anisotropic TV and Isotropic TV denoising algorithms.

Segma	SNR_TV_AS	Number of iteration	Relative Error	Time(s)
0.08	13.1821	7	0.14374	45.056700
0.15	10.3202	6	0.265516	55.542690
0.25	6.9137	6	0.435046	28.271569
0.35	4.4097	5	0.597903	23.069885
0.5	1.8064	5	0.819539	24.158445

Table 1: Results for Image university Anisotropic TV denoising algorithm

Figure 2: Original image and noisy image for segma 0.08

Figure 3: The results of denosed images for segma 0.08

Figure 4: Original image and noisy image for segma $0: 35$

Figure 5: The results of denosed images for segma 0.35

Segma	SNR_TV_IS	Number of iteration	Relative Error	Time(s)
0.08	13.1742	7	0.143628	31.280807
0.15	10.3192	6	0.265229	25.489589
0.25	6.9151	6	0.434996	26.993944
0.35	4.4145	5	0.597577	21.442199
0.5	1.8096	4	0.819026	19.234112

Table 2: Results for Image university Isotropic TV denoising algorithm

Segma	SNR_TV_AS	SNR_TV_IS	SNR ROF	SNR Tykhonov
0.08	13.1742	13.1742	2.2494	2.2494
0.15	10.3192	10.3192	1.0372	1.0372
0.25	6.9151	6.9151	0.4657	0.4657
0.35	4.4145	4.4145	0.3858	0.3858
0.5	1.8096	1.8096	0.3813	0.3813

Table 3: The different values SNR of denoising image b Tykhonov; ROF; the Anisotropic TV and the Isotropic TV .

4 Conclusion

Based on the above results, we can conclude that the algorithms of $T V$ Anisotrope and $T V$ Isotropen work with a direct relationship, the algorithm converges monotonously, the TV Isotropic noise is faster than Anisotrope. Consequently, the results obtained by the modele the $R O F$ of denoising image shows that the regularization term has more in influence on the energy and therefore on the position because they used the Borne Variable Function Space $B V$. The diferent values of $S N R$ of denosed image by: Tychonov regularization, model $R O F$, are almost close and the $T V$ Anisotropic and $T V$ Isotropic denoising algorithms also the expressed results confirm that the methods not only ofers a better visual response, but that it can also remove additive wafer noise.
[]

References

[1] J. F. Aujol. Traitement d'image par approches variationnelles et équations aux dérivées partielles. Semestre d'enseignement UNESCO sur le traitement des images numériques, TUNIS, ENIT, 2005.
[2] A. Auslender et Al. Penalty-proximal in convex programming. J.O.T.A., 55(1):1-21, 1987.
[3] M. Bergounioux. Quelques méthodes mathématiques pour le traitement d'image.
[4] J. M. Borwein H. H. Bauschke and P. L. Combettes. Bregman monotone optimization algorithms. SIAM J. Control Optim., 42:596-636, 2003.
[5] Jacqueline Bush. Bregman Algorithms. PhD thesis, Senior Thesis, University of California, Santa Barbara, 10 june 2011.
[6] Rudin-Osher-Fatemi P. Getreuer. Total varition denoising using split bregman. Image Processing On Line (IOL), 2:74-95, 2012. $\substack{\text { ataturk } \\ \text { UNIVRITY } \\ \text { publications }}$
[7] A. Guesmia S. Gheraibia and N. Daili. The robustness of proximal penalty algorithms in restoration of noisy image,. Journal of Mathematics and Statistics, 46(6):1043-1052, 2017.
[8] S. Gheraibia and N. Daili. Restoration of the noised images by the proximal penalty algorithmes. Pac. J. Appl. Math. (PJAM), 7(3):149-161, 2015.
[9] T. Goldstein and S. Osher. The split bregman method for ℓ_{1}-regularized problems. SIAM J. Imaging Sci, 2(2):323-343, 2009.
[10] D. Goldfarb J. Xu S. Osher, M. Burger and W. Yin. An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul, 4:460-489, 2005.
[11] A. K. Louis F. Schopfer and T. Schuster. Nonlinear iterative methods for linear ill-posed problems in banach spacel. Inverse Problemsl, 22:311-329, 2006.

Some completely monotonicity properties and related inequalities involving k-trigamma and k-tetragamma functions

Emrah Yıldırım ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Science and Arts, Aydın Adnan Menderes University, Aydın, Turkey, emrahyildirim@adu.edu.tr

Abstract

A function f is said to be completely monotonic on an interval I if f has derivatives of all order on I and $0 \leq(-1)^{n} f^{(n)}(x)<\infty$ for $\forall x \in I$ and $n \geq 0$. Also, BernsteinWidder Theorem in [1, Theorem 12a, p. 160] states that a function $f(x)$ on $[0, \infty)$ is completely monotonic if and only if there exists a bounded and non-decreasing function $\alpha(t)$ such that $f(x)=\int_{0}^{\infty} e^{-x t} d \alpha(t)$ converges for $\forall x \in[0, \infty)$. This says that a completely monotonic function $f(x)$ on $[0, \infty)$ is the Laplace transform of the measure $\alpha(t)$. In this work, we motivate by the previous information, development in k-special functions such as properties on k-gamma function (see [2]), integral representations on k-digamma function in [3] and inequalities obtained by Yıldırım in [4]. At first, we show the complete monotonicity of the function defined by $\left[\psi_{k}^{\prime}(x)\right]^{2}+\frac{1}{k} \psi_{k}^{\prime \prime}(x)$ and then obtain double sided inequalities on the function for all positive real values of x and k. The results in this work are k-generalizations of the classical ones in $[5,6,7]$.

Keywords: Complete monotonicity, Inequalities, k-digamma function. 2020 Mathematics Subject Classification: 26A48, 33B99, 26D07.

1 Preliminaries and Motivation

Many researchers interest in special functions and obtain inequalities, monotonicity properties or generalizations on these functions. Such as Díaz and Pariguan introduced k-Pochhammer symbol in order to define k-gamma function Γ_{k} as the following limit expression:

Definition 1.1. [2] Let $x \in \mathbb{C}, k \in \mathbb{R}$ and $n \in \mathbb{N}^{+}$, the Pochhammer k-symbol is given as

$$
(x)_{n, k}=x(x+k)(x+2 k) \ldots(x+(n-1) k) .
$$

Definition 1.2. [2] For $k>0$, the k-gamma function Γ_{k} is given by

$$
\Gamma_{k}(x)=\lim _{n \rightarrow \infty} \frac{n!k^{n}(n k)^{\frac{n}{k}-1}}{(x)_{n, k}}, \quad x \in \mathbb{C} \backslash k \mathbb{Z}^{-} .
$$

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

Dí az and Pariguan also obtained its integral and infinite product representations by

$$
\begin{align*}
\Gamma_{k}(x) & =\int_{0}^{\infty} u^{x-1} e^{-\frac{u^{k}}{k}} d u \tag{1.1}\\
\frac{1}{\Gamma_{k}(x)} & =x k^{-\frac{x}{k}} e^{\frac{x}{k} \gamma} \prod_{n=1}^{\infty}\left(\left(1+\frac{x}{n k}\right) e^{-\frac{x}{n k}}\right) \tag{1.2}
\end{align*}
$$

for $x \in \mathbb{C}, \operatorname{Re}(x)>0$. They proved some properties on k-gamma function such as

$$
\begin{align*}
& \Gamma_{k}(x+k)=x \Gamma_{k}(x) \tag{1.3}\\
& \Gamma_{k}(x)=k^{\frac{x}{k}-1} \Gamma\left(\frac{x}{k}\right) . \tag{1.4}
\end{align*}
$$

Authors in [3] found several integral representations of k-digamma function. One of them is defined by

$$
\begin{equation*}
\psi_{k}(x)=\frac{\ln k}{k}+\frac{\gamma}{k}+\int_{0}^{1} \frac{u^{k-1}-u^{x-1}}{1-u^{k}} d u \tag{1.5}
\end{equation*}
$$

for $x, k>0$. By substituting $e^{-t}=u,-e^{-t} d t=d u$ and $t: \infty \rightarrow 0$ in the integral representation of k-digamma function (1.5) and then differentiating the equation one can obtain the following results:

Lemma 1.3. [8] For all positive real values of x and k and positive integer n, k-digamma and k-polygamma functions can be defined as the following integrals:

$$
\begin{align*}
\psi_{k}(x) & =\frac{\ln k-\gamma}{k}+\int_{0}^{\infty} \frac{e^{k t}-e^{-x t}}{1-e^{-k t}} d t \tag{1.6}\\
\psi_{k}^{(n)}(x) & =(-1)^{n+1} \int_{0}^{\infty} \frac{t^{n}}{1-e^{-k t}} e^{-x t} d t \tag{1.7}
\end{align*}
$$

Taking logarithmic derivative of the equation (1.4) leads us to the recurrence formula for k-digamma function by

$$
\begin{equation*}
\psi_{k}(x+k)=\frac{1}{x}+\psi_{k}(x) \tag{1.8}
\end{equation*}
$$

and for first and second derivatives of the equation (1.8) that are called k-trigamma and k-tetragamma functions respectively, we get

$$
\begin{align*}
& \psi_{k}^{\prime}(x+k)=\psi_{k}^{\prime}(x)-\frac{1}{x^{2}} \tag{1.9}\\
& \psi_{k}^{\prime \prime}(x+k)=\psi_{k}^{\prime \prime}(x)+\frac{2}{x^{3}} \tag{1.10}
\end{align*}
$$

respectively for $x, k>0$.
Yıldırım in [4] uses Binet's first formula for the logarithms of k-gamma function $\ln \Gamma_{k}(x)$ and complete monotonicity properties on k-digamma function and its derivatives to obtain following inequalities:

Corollary 1.4. [4] The following inequalities

$$
\begin{align*}
& \frac{\ln x}{k}-\frac{1}{2 x}-\frac{k}{12 x^{2}}<\psi_{k}(x)<\frac{\ln x}{k}-\frac{1}{2 x} \tag{1.11}\\
& \frac{1}{k x}+\frac{1}{2 x^{2}}+\frac{k}{6 x^{3}}-\frac{k^{3}}{30 x^{5}}<\psi_{k}^{\prime}(x)<\frac{1}{k x}+\frac{1}{2 x^{2}}+\frac{k}{6 x^{3}} \tag{1.12}
\end{align*}
$$

and

$$
\begin{equation*}
-\frac{1}{k x^{2}}-\frac{1}{x^{3}}-\frac{k}{2 x^{4}}<\psi_{k}^{\prime \prime}(x)<-\frac{1}{k x^{2}}-\frac{1}{x^{3}} \tag{1.13}
\end{equation*}
$$

are valid for all $x, k>0$.

By using previous inequalities (1.12) and (1.13) and the recurrence formula (1.9), we can easily derive the following result:

Remark 1.5. The following double sided inequalities

$$
\begin{aligned}
& {\left[\frac{1}{x^{2}}+\frac{1}{k(x+k)}+\frac{1}{2(x+k)^{2}}+\frac{k}{6(x+k)^{3}}-\frac{k}{30(x+k)^{5}}\right]^{2}-\frac{1}{k}\left(\frac{1}{k x^{2}}+\frac{1}{x^{3}}+\frac{k}{2 x^{4}}\right)} \\
& \quad<\left[\psi_{k}^{\prime}(x)\right]^{2}+\frac{1}{k} \psi_{k}^{\prime \prime}(x)\left[\frac{1}{x^{2}}+\frac{1}{k(x+k)}+\frac{1}{2(x+k)^{2}}+\frac{k}{6(x+k)^{3}}\right]^{2}-\frac{1}{k}\left(\frac{1}{k x^{2}}+\frac{1}{x^{3}}\right)
\end{aligned}
$$

i.e.

$$
\begin{equation*}
\frac{p_{k}(x)}{900 x^{4}(x+k)^{10}}<\left[\psi_{k}^{\prime}(x)\right]^{2}+\frac{1}{k} \psi_{k}^{\prime \prime}(x)<\frac{q_{k}(x)}{36 x^{4}(x+k)^{6}} \tag{1.14}
\end{equation*}
$$

are valid, where the functions p_{k} and q_{k} are defined by

$$
\begin{align*}
p_{k}(x) & =75 x^{10}+900 k x^{9}+4840 k^{2} x^{8}+15370 k^{3} x^{7}+31865 k^{4} x^{6}+45050 k^{5} x^{5} \\
& +44101 k^{6} x^{4}+29700 k^{7} x^{3}+13290 k^{8} x^{2}+3600 k^{9} x+450 k^{10} . \tag{1.15}
\end{align*}
$$

and

$$
\begin{equation*}
q_{k}(x)=21 x^{6}+132 k x^{5}+352 k^{2} x^{4}+504 k^{3} x^{3}+408 k^{4} x^{2}+180 k^{5} x+36 k^{6} \tag{1.16}
\end{equation*}
$$

respectively.
We want to note that the left side of the inequality (1.14) is a k-generalization that is obtained by Alzer in $\left[5,(4,39)\right.$, p.208]. The function defined by $\left[\psi_{k}^{\prime}(x)\right]^{2}+\frac{1}{k} \psi_{k}^{\prime \prime}(x)$ is interested by many researchers. In [8] authors obtain the following results:

Theorem 1.6. [8] The functions

$$
\begin{equation*}
P(x)=\left[\psi_{k}^{\prime}(x)\right]^{2}+\frac{1}{k} \psi_{k}^{\prime \prime}(x)-\frac{x^{2}+12 k^{2}}{12 x^{4}(x+k)^{2}} \tag{1.17}
\end{equation*}
$$

and

$$
\begin{equation*}
Q(x)=\frac{x+12 k}{12 x^{4}(x+k)}-\left[\psi_{k}^{\prime}(x)\right]^{2}-\frac{1}{k} \psi_{k}^{\prime \prime}(x) \tag{1.18}
\end{equation*}
$$

are completely monotonic for all positive real values of x and k. As an immediate consequence, the following double sided inequalities

$$
\begin{equation*}
\frac{x^{2}+12 k^{2}}{12 x^{4}(x+k)^{2}}<\left[\psi_{k}^{\prime}(x)\right]^{2}+\frac{1}{k} \psi_{k}^{\prime \prime}(x)<\frac{x+12 k}{12 x^{4}(x+k)} \tag{1.19}
\end{equation*}
$$

are valid.
Motivated by previous results and classical generalizations, we firstly show completely monotonicity properties on the function related to $\left[\psi_{k}^{\prime}(x)\right]^{2}+\frac{1}{k} \psi_{k}^{\prime \prime}(x)$ for all real values x and k.

2 Main Results

At first, we need the following property:
Lemma 2.1. We have

$$
\begin{equation*}
\frac{1}{x^{r / k}}=\frac{k^{r / k-1}}{\Gamma_{k}(r)} \int_{0}^{\infty} t^{r / k-1} e^{-x t} d t \tag{2.1}
\end{equation*}
$$

for $\forall x, k, r \in \mathbb{R}^{+}$.

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

Proof. By substituting $u^{k} / k=x t, u^{k-1} d u=x d t$ in the integral representation of k-gamma function (1.1), one can get desired result. We want to note that for $n \in \mathbb{Z}^{+}$, the equation (2.1) becomes

$$
\begin{equation*}
\frac{1}{x^{n}}=\frac{1}{(n-1)!} \int_{0}^{\infty} t^{n-1} e^{-x t} d t \tag{2.2}
\end{equation*}
$$

by using the equation $\Gamma_{k}(n k)=(n-1)!k^{n-1}$
Now we will ready to show the complete monotonicity on the function related to $\left[\psi_{k}^{\prime}(x)\right]^{2}+$ $\frac{1}{k} \psi_{k}^{\prime \prime}(x)$:

Theorem 2.2. The functions

$$
\begin{equation*}
F(x)=\left[\psi_{k}^{\prime}(x)\right]^{2}+\frac{1}{k} \psi_{k}^{\prime \prime}(x)-\frac{p_{k}(x)}{900 x^{4}(x+k)^{10}} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
G(x)=\frac{q_{k}(x)}{36 x^{4}(x+k)^{6}}-\left[\psi_{k}^{\prime}(x)\right]^{2}-\frac{1}{k} \psi_{k}^{\prime \prime}(x) \tag{2.4}
\end{equation*}
$$

are completely monotonic for all positive values of x and k, where the functions p_{k} and $q_{k}(x)$ are defined by (1.15) and (1.16) respectively.

Proof. Using recurrence formula (1.9) and (1.10) yields that

$$
\begin{aligned}
& F(x)-F(x+k)=\left[\psi_{k}^{\prime}(x)-\psi_{k}^{\prime}(x+k)\right]\left[\psi_{k}^{\prime}(x)+\psi_{k}^{\prime}(x+k)\right]+\frac{1}{k}\left[\psi_{k}^{\prime \prime}(x)-\psi_{k}^{\prime \prime}(x+k)\right] \\
& \\
& -\left[\frac{p_{k}(x)}{900 x^{4}(x+k)^{10}}-\frac{p_{k}(x+k)}{900(x+k)^{4}(x+2 k)^{10}}\right] \\
& \quad=\frac{1}{x^{2}}\left[2 \psi_{k}^{\prime}(x)-\frac{1}{x^{2}}\right]-\frac{2}{k x^{3}}-\left[\frac{p_{k}(x)}{900 x^{4}(x+k)^{10}}-\frac{p_{k}(x+k)}{900(x+k)^{4}(x+2 k)^{10}}\right] \\
& \\
& =\frac{2}{x^{2}}\left[\psi_{k}^{\prime}(x)-\frac{1}{k x}-\frac{3}{4 x^{2}}+\frac{28}{5 k(x+k)}-\frac{251}{120(x+k)^{2}}-\frac{7 k}{6(x+k)^{3}}+\frac{13 k^{2}}{90(x+k)^{4}}\right. \\
& \\
& -\frac{13 k^{3}}{180(x+k)^{5}}-\frac{k^{4}}{120(x+k)^{6}}+\frac{k^{5}}{180(x+k)^{7}}+\frac{k^{6}}{200(x+k)^{8}}+\frac{k^{7}}{900(x+k)^{9}}-\frac{k^{8}}{1800(x+k)^{10}} \\
& \\
& +\frac{51}{10 k(x+2 k)}+\frac{331}{120(x+2 k)^{2}}+\frac{17 k}{12(x+2 k)^{3}}+\frac{49 k^{2}}{72(x+2 k)^{4}}+\frac{47 k^{3}}{180(x+2 k)^{5}} \\
& \\
& \left.-\frac{k^{4}}{60(x+2 k)^{6}}-\frac{2 k^{5}}{45(x+2 k)^{7}}-\frac{13 k^{6}}{600(x+2 k)^{8}}-\frac{k^{7}}{450(x+2 k)^{9}}+\frac{k^{8}}{450(x+2 k)^{10}}\right] \\
& \\
& =\frac{2}{x^{2}} f(x) .
\end{aligned}
$$

Using the equation (2.2) and integral representation (1.7) leads us to

$$
\begin{aligned}
& f(x)=\int_{0}^{\infty}\left(\frac{t}{1-e^{-t}}-\frac{1}{2 k}-\frac{3 t}{4}+\frac{28}{5} e^{-k t}+\frac{251}{120} t e^{-k t}-\frac{7 k}{12} t^{2} e^{-k t}+\frac{13 k^{2}}{540} t^{3} e^{-k t}\right. \\
& -\frac{13 k^{3}}{4320} t^{4} e^{-k t}-\frac{k^{4}}{14400} t^{5} e^{-k t}+\frac{k^{5}}{129600} t^{6} e^{-k t}+\frac{k^{6}}{100800} t^{7} e^{-k t}+\frac{k^{7}}{3628800} t^{8} e^{-k t} \\
& -\frac{k^{8}}{65318400} t^{9} e^{-k t}+\frac{51}{10 k} e^{-2 k t}+\frac{331}{120} t e^{-2 k t}+\frac{17 k}{24} t^{2} e^{-2 k t}+\frac{49 k^{2}}{72.3!} t^{3} e^{-2 k t} \\
& +\frac{47 k^{3}}{180.4!} t^{4} e^{-2 k t}-\frac{k^{4}}{60.5!} t^{5} e^{-2 k t}-\frac{2 k^{5}}{45.6!} t^{6} e^{-2 k t}-\frac{13 k^{6}}{600.7!} t^{7} e^{-2 k t}-\frac{k^{7}}{450.8!} t^{8} e^{-2 k t} \\
& \left.+\frac{k^{8}}{450.9!} t^{9} e^{-2 k t}\right) e^{-x t} d t .
\end{aligned}
$$

By using similar technique in [6], we can show that the function f is completely monotonic on $(0, \infty)$ and since $\frac{2}{x^{2}}$ is also completely monotonic and the product of two completely monotonic functions is completely monotonic on the same interval, we conclude that the function $F(x)-F(x+k)$ is completely monotonic for all $x, k>0$, i.e.

$$
(-1)^{n} F^{(n)}(x)-(-1)^{n} F^{(n)}(x+k) \geq 0
$$

By mathematical induction, the proof is completed. The complete monotonicity property of the function $G(x)$ can be obtained similarly.
We want to note that the desired result can also be obtained by using the relation $\psi_{k}^{\prime}(x)=$ $\frac{1}{k^{2}} \psi^{\prime}\left(\frac{x}{k}\right)$. The difference $F(x)-F(x+k)$ becomes

$$
\begin{aligned}
& F(x)-F(x+k)=\frac{2}{x^{2}}\left[\frac{1}{k^{2}} \psi^{\prime}(x)-\frac{1}{k^{2}(x / k)}-\frac{3}{4 k^{2}(x / k)^{2}}+\frac{28}{5 k^{2}(x / k+1)}-\frac{251}{120 k^{2}(x / k+1)^{2}}\right. \\
& -\frac{7}{6 k^{2}(x / k+1)^{3}}+\frac{13}{90 k^{2}(x / k+1)^{4}}-\frac{13}{180 k^{2}(x / k+1)^{5}}-\frac{1}{120 k^{2}(x / k+1)^{6}}+\frac{1}{180 k^{2}(x / k+1)^{7}} \\
& +\frac{1}{200 k^{2}(x / k+1)^{8}}+\frac{1}{900 k^{2}(x / k+1)^{9}}-\frac{1}{1800 k^{2}(x / k+1)^{10}}+\frac{51}{10 k^{2}(x / k+2)}+\frac{331}{120 k^{2}(x / k+4} \\
& +\frac{17}{12 k^{2}(x / k+2)^{3}}+\frac{49}{72 k^{2}(x / k+2)^{4}}+\frac{47}{180 k^{2}(x / k+2)^{5}}-\frac{1}{60 k^{2}(x / k+2)^{6}}-\frac{2}{45 k^{2}(x / k+2)^{7}} \\
& \left.-\frac{13}{600 k^{2}(x / k+2)^{8}}-\frac{1}{450 k^{2}(x / k+2)^{9}}+\frac{1}{450 k^{2}(x / k+2)^{10}}\right] \\
& F(x)-F(x+k)=\frac{2}{(k x)^{2}} H\left(\frac{x}{k}\right) .
\end{aligned}
$$

Since authors in [6] show that the function H is completely monotonic on $(0, \infty)$. Therefore the function $F(x)$ is also completely monotonic for all $x, k>0$

As an immediate consequence, we can obtain the following result:
Corollary 2.3. The function

$$
\begin{equation*}
S(x)=\psi_{k}^{\prime}(x)-\frac{s(x)}{1800 k x^{2}(x+k)^{10}(x+2 k)^{10}} \tag{2.5}
\end{equation*}
$$

is completely monotonic for all positive real values of x and k, where

$$
\begin{aligned}
s(x) & =1382400 k^{21}+21657600 k^{20} x+162792960 k^{19} x^{2}+778137600 k^{18} x^{3} \\
& +2645782983 k^{17} x^{4}+6789381590 k^{16} x^{5}+13626443025 k^{15} x^{6} \\
& +21889330810 k^{14} x^{7}+28579049475 k^{13} x^{8}+30634381522 k^{12} x^{9} \\
& +27125436630 k^{11} x^{10}+19896883200 k^{10} x^{11}+12088287630 k^{9} x^{12} \\
& +6063596590 k^{8} k^{13}+2494770300 k^{7} x^{14}+832958400 k^{6} x^{15} \\
& +222060150 k^{5} x^{16}+46134540 k^{4} x^{17}+7195500 k^{3} x^{18} \\
& +792300 k^{2} x^{19}+54900 k x^{20}+1800 x^{21} .
\end{aligned}
$$

Remark 2.4. We want to note that Theorem 2.2 and Corollary 2.3 are k-generalizations of Theorem 1 and Remark 2 in [6], respectively.

Remark 2.5. The left side of inequality (1.14)is better than the left side of inequality (1.19) for $x>1.8157 k$ and $k>0$. Also the upper bound in the inequality (1.14) is better than the one in the inequality (1.19) for $0<x<6.58818 k$.

References

[1] D. V. Widder. The Laplace Transform. Princeton University Press, Princeton, 1946.
[2] R. Díaz and E. Pariguan. On hypergeometric functions and pochhammer k-symbol. Divulg. Mat., 15(2):179-192, 2007.
[3] E. Yıldırım and İ. Ege. On k-analogue of digamma function. J. Class. Anal., 13(26):123131, 2018.
[4] E. Yıldırım. Monotonicity properties on k-digamma function and its related inequalities. J. Math. Inequal., 14(1):161-173, 2020.
[5] H. Alzer. Sharp inequalities for the digamma and polygamma functions. Forum Math., 16(2):181-221, 2004.
[6] J. L. Zhao B. N. Guo and F. Qi. A completely monotonic function involving the tri- and tetra-gamma functions. Math. Slovaca, 63(3):469-478, 2013.
[7] B. N. Guo J. L. Zhao and F. Qi. Complete monotonicity of two functions involving the tri- and tetra-gamma functions. Period. Math. Hungar., 65(1):147-155, 2012.
[8] J. L. Zhang L. Yin and X. Lin. Complete monotonicity related to the k-polygamma functions with applications. Adv. Difference Equ., 2019(1):1-10, 2019.

Generating Matrix and Sums of Hyperbolic Fibonacci Sequnce

Sait TAŞ ${ }^{1}$
${ }^{1}$ Department of Mathematics, Science Faculty, Ataturk University, Erzurum, Turkey. saittas@atauni.edu.tr

In this paper, we study the hyperbolic Fibonacci sequence and developed generating matrices for its. First we proved two results on the even sum of the hyperbolic Fibonacci sequence, using the generating matrix approach. We then deduce the odd sum, some identity and recursive formulas for this sequence.

Keywords: Matrix, Hyperbolic number, Hyperbolic Fibonacci number.
2020 Mathematics Subject Classification: 11B37, 11B39, 11B83.

1 INTRODUCTION

There has been enormous interest in the research of number sequences due to their abundance and rich properties which had contributed to further research and many applications in number theory, science and nature. (See for example [4], [5], [6], [9], [10], [11], [12], [15], [18], [19]).

The set of hyperbolic numbers \mathbb{H} can be described as

$$
\mathbb{H}=\left\{z=x+h y: h \notin \mathbb{R}, h^{2}=1, x, y \in \mathbb{R}\right\}
$$

Addition, substruction and multiplication of any two hyperbolic numbers z_{1} and z_{2} are defined by

$$
\begin{aligned}
& z_{1} \pm z_{2}=\left(x_{1}+h y_{1}\right) \pm\left(x_{2}+h y_{2}\right)=\left(x_{1} \pm x_{2}\right)+h\left(y_{1} \pm y_{2}\right) \\
& z_{1} \times z_{2}=\left(x_{1}+h y_{1}\right) \times\left(x_{2}+h y_{2}\right)=x_{1} x_{2}+y_{1} y_{2}+h\left(x_{1} y_{2}+y_{1} x_{2}\right)
\end{aligned}
$$

and the division of two hyperbolic numbers are given by

$$
\frac{z_{1}}{z_{2}}=\frac{x_{1}+h y_{1}}{x_{2}+h y_{2}}=\frac{\left(x_{1}+h y_{1}\right)\left(x_{2}-h y_{2}\right)}{\left(x_{2}+h y_{2}\right)\left(x_{2}-h y_{2}\right)}=\frac{x_{1} x_{2}+y_{1} y_{2}}{x_{2}^{2}-y_{2}^{2}}+h \frac{\left(x_{1} y_{2}+y_{1} x_{2}\right)}{x_{2}^{2}-y_{2}^{2}}
$$

The hyperbolic conjugation of $z=x+h y$ is defined by

$$
\bar{z}=x-h y
$$

For more informatin on hyperbolic numbers, see for example ([1], [2], [3], [7], [8], [13], [14], [16], [17])

In [2], author, the hyperbolic Fibonacci sequence defined by

$$
\tilde{F}_{n}=F_{n}+h F_{n+1}, \quad h^{2}=1
$$

with $F_{0}=h, F_{1}=1+h$. That is, The hyperbolic Fibonacci sequence F_{n} is

$$
h, 1+h, 1+2 h, 2+3 h, 3+5 h, \cdots,(1+h) F_{n}+h F_{n-1}, \cdots
$$

Consider the generalized hyperbolic Fibonacci sequence $\left\{\tilde{G}_{n}\right\}$ defined by the recurrence relation

$$
\tilde{G}_{n+1}=a \tilde{G}_{n}+\tilde{G}_{n-1}
$$

for $n \geq 1$ where $\tilde{G}_{0}=h, \tilde{G}_{1}=1+h$, and a is any integer.
For the case $a=1,\left\{\tilde{G}_{n}\right\}=\left\{\tilde{F}_{n}\right\}$ where \tilde{F}_{n} is the $n^{\text {th }}$ hyperbolic Fibonacci number.

2 Matrix of Hyperbolic Fibonacci Sequence

Given a number sequnce $\left\{u_{n}\right\}$, we call M a generating matrix for the sequnce if for any positive integer m, the entries in M^{m} are numbers or combination of numbers from the sequnce $\left\{u_{n}\right\}$ itself.

The matrix of the hyperbolic Fibonacci sequence is defined by

$$
\left(\begin{array}{cc}
\tilde{F}_{n+1} & \tilde{F}_{n} \\
\tilde{F}_{n} & \tilde{F}_{n-1}
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right)^{n}\left(\begin{array}{cc}
\tilde{F}_{1} & \tilde{F}_{0} \\
\tilde{F}_{0} & \tilde{F}_{-1}
\end{array}\right)
$$

In this paper, we investigate the mathematical properties of the generalized Hyperbolic Fibonacci sequence $\left\{\tilde{G}_{n}\right\}=\left\{\tilde{F}_{n}\right\}$ using generating matrix of form $\left(\begin{array}{cc}3 & -1 \\ 1 & 0\end{array}\right)$.

Also we obtained formula for even

$$
\sum_{i=0}^{n} \tilde{F}_{2 i}
$$

the odd sum

$$
\sum_{i=0}^{n} \tilde{F}_{2 i+1}
$$

is deduced accordingly.

Theorem 1 The sum of the hyperbolic Fibonacci numbers can be expressed as

$$
\sum_{i=0}^{n} \tilde{F}_{i}=\tilde{F}_{n+2}-(1+h)
$$

Proof. By induction methods, for integer $n=1$, the equeation is true. Indeed;

$$
\sum_{i=0}^{1} \tilde{F}_{i}=\tilde{F}_{0}+\tilde{F}_{1}=h+(1+h)=1+2 h=\tilde{F}_{3}-(1+h)=(2+3 h)-(1+h)
$$

Now let the equation be true for $n=k$. That is,

$$
\sum_{i=0}^{k} \tilde{F}_{i}=\tilde{F}_{k+2}-(1+h)
$$

In this case, let's show that the equation is also true for $n=k+1$.

$$
\begin{aligned}
\sum_{i=0}^{k+1} \tilde{F}_{i} & =\underbrace{\tilde{F}_{0}+\tilde{F}_{1}+\tilde{F}_{2}+\cdots+\tilde{F}_{k}}_{\tilde{F}_{k+2}-(1+h)}+\tilde{F}_{k+1} \\
& =\tilde{F}_{k+2}-(1+h)+\tilde{F}_{k+1} \\
& =\tilde{F}_{k+3}-(1+h)
\end{aligned}
$$

This completes the proof of the theorem.
Lemma 2 For integer a, let

$$
\tilde{G}_{n+1}=a \tilde{G}_{n}+\tilde{G}_{n-1}
$$

for $n \geq 1$ where $\tilde{G}_{0}=h, \tilde{G}_{1}=1+h$. Then for any positive integer $t \geq 2$,

$$
\tilde{G}_{t+2}=\left(a^{2}+2\right) \tilde{G}_{t}+\tilde{G}_{t-2}
$$

Proof.

$$
\begin{aligned}
\tilde{G}_{t+2} & =a \tilde{G}_{t+1}+\tilde{G}_{t} \\
& =a \tilde{G}_{t+1}+\tilde{G}_{t}+\tilde{G}_{t-2}-\tilde{G}_{t-2} \\
& =a\left(a \tilde{G}_{t}+\tilde{G}_{t-1}\right)+\tilde{G}_{t}+\left(\tilde{G}_{t}-a \tilde{G}_{t-1}\right)-\tilde{G}_{t-2} \\
& =\left(a^{2}+2\right) \tilde{G}_{t}+\tilde{G}_{t-2}
\end{aligned}
$$

Lemma 3 For any positive integer n,

$$
\left(\begin{array}{cc}
\tilde{F}_{2 n+2} & -\tilde{F}_{2 n} \\
\tilde{F}_{2 n} & -\tilde{F}_{2 n-2}
\end{array}\right)=\left(\begin{array}{cc}
3 & -1 \\
1 & 0
\end{array}\right)^{n}\left(\begin{array}{cc}
\tilde{F}_{2} & -\tilde{F}_{0} \\
\tilde{F}_{0} & -\tilde{F}_{-2}
\end{array}\right)
$$

Proof. First note that the lemma is true for $n=1$ since

$$
\left(\begin{array}{cc}
\tilde{F}_{4} & -\tilde{F}_{2} \\
\tilde{F}_{2} & -\tilde{F}_{0}
\end{array}\right)=\left(\begin{array}{cc}
3 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
\tilde{F}_{2} & -\tilde{F}_{0} \\
\tilde{F}_{0} & -\tilde{F}_{2}
\end{array}\right)
$$

Consequently,
$\left(\begin{array}{cc}3 & -1 \\ 1 & 0\end{array}\right)^{k+1}\left(\begin{array}{cc}\tilde{F}_{2} & -\tilde{F}_{0} \\ \tilde{F}_{0} & -\tilde{F}_{-2}\end{array}\right)=\left(\begin{array}{cc}\tilde{F}_{2 k+2} & -\tilde{F}_{2 k} \\ \tilde{F}_{2 k} & -\tilde{F}_{2 k-2}\end{array}\right)\left(\begin{array}{cc}3 & -1 \\ 1 & 0\end{array}\right)=\left(\begin{array}{cc}3 \tilde{F}_{2 k+2}-\tilde{F}_{2 k} & -\tilde{F}_{2 k+2} \\ 3 \tilde{F}_{2 k}-\tilde{F}_{2 k-2} & -\tilde{F}_{2 k}\end{array}\right)$
By Lemma 1 with $a=1$ and $t=2 k+2$, we have

$$
\tilde{F}_{2 k+4}=3 \tilde{F}_{2 k+2}-\tilde{F}_{2 k}
$$

and

$$
\tilde{F}_{2 k+2}=3 \tilde{F}_{2 k}-\tilde{F}_{2 k-2}
$$

This completes the proof.

Lemma 4 Let

$$
E_{m}=\sum_{i=0}^{m} \widetilde{F}_{2 i}
$$

Then for any positive integer n,

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
E_{n} & \tilde{F}_{2 n+2} & -\tilde{F}_{2 n} \\
E_{n-1} & \tilde{F}_{2 n} & -\tilde{F}_{2 n-2}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 3 & -1 \\
0 & 1 & 0
\end{array}\right)^{n}\left(\begin{array}{ccc}
1 & 0 & 0 \\
\tilde{F}_{0} & \tilde{F}_{2} & -\tilde{F}_{0} \\
0 & \tilde{F}_{0} & -\tilde{F}_{-2}
\end{array}\right)
$$

Proof. First note that the lemma is true for $n=1$ since

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
E_{1} & \tilde{F}_{4} & -\widetilde{F}_{2} \\
E_{0} & \tilde{F}_{2} & -\tilde{F}_{0}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 3 & -1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
\tilde{F}_{0} & \tilde{F}_{2} & -\widetilde{F}_{0} \\
0 & \tilde{F}_{0} & -\tilde{F}_{-2}
\end{array}\right)
$$

Assume the lemma is true for $n=k \geq 2$. Then

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
E_{k} & \tilde{F}_{2 k+2} & -\tilde{F}_{2 k} \\
E_{k-1} & \tilde{F}_{2 k} & -\tilde{F}_{2 k-2}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 3 & -1 \\
0 & 1 & 0
\end{array}\right)^{k}\left(\begin{array}{ccc}
1 & 0 & 0 \\
\tilde{F}_{0} & \tilde{F}_{2} & -\tilde{F}_{0} \\
0 & \tilde{F}_{0} & -\tilde{F}_{-2}
\end{array}\right)
$$

Consequently,

$$
\begin{aligned}
&\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 3 & -1 \\
0 & 1 & 0
\end{array}\right)^{k+1}\left(\begin{array}{ccc}
1 & 0 & 0 \\
\tilde{F}_{0} & \tilde{F}_{2} & -\tilde{F}_{0} \\
0 & \tilde{F}_{0} & -\tilde{F}_{-2}
\end{array}\right) \\
&=\left(\begin{array}{ccc}
1 & 0 & \tilde{F}^{\prime} \\
E_{k} & \tilde{F}_{2 k+2} & -\tilde{F}_{2 k} \\
E_{k-1} & \tilde{F}_{2 k} & -\tilde{F}_{2 k-2}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 3 & -1 \\
0 & 1 & 0
\end{array}\right) \\
&=\left(\begin{array}{ccc}
1 & 0 & 0 \\
E_{k}+\tilde{F}_{2 k+2} & 3 \tilde{F}_{2 k+2}-\tilde{F}_{2 k} & -\tilde{F}_{2 k+2} \\
E_{k-1}+\tilde{F}_{2 k} & 3 \tilde{F}_{2 k}-\tilde{F}_{2 k-2} & -\tilde{F}_{2 k}
\end{array}\right)
\end{aligned}
$$

By Lemma 1 with $a=1$, we have $\tilde{F}_{t+2}=3 \tilde{F}_{t}-\tilde{F}_{t-2}$ for any $t \geq 2$. This completes the proof.

Theorem 5 For any integer positive n,

$$
\sum_{i=0}^{n} \tilde{F}_{2 i}=\tilde{F}_{2 n+2}-\tilde{F}_{2 n}-1
$$

Proof. By induction methods, for integer $n=1$, the equeation is true. Indeed;

$$
\sum_{i=0}^{1} \tilde{F}_{2 i}=\tilde{F}_{0}+\tilde{F}_{2}=h+(1+2 h)=1+3 h=\tilde{F}_{4}-\tilde{F}_{2}-1=(3+5 h)-(1+2 h)-1
$$

Now let the equation be true for $n=k$. That is,

$$
\sum_{i=0}^{k} \tilde{F}_{2 i}=\tilde{F}_{2 k+2}-\tilde{F}_{2 k}-1
$$

In this case, let's show that the equation is also true for $n=k+1$.

$$
\begin{aligned}
\sum_{i=0}^{k+1} \tilde{F}_{2 i} & =\underbrace{\tilde{F}_{2 k+2}-\tilde{F}_{2 k}-1}_{\tilde{F}_{0}+\tilde{F}_{2}+\tilde{F}_{4}+\cdots+\tilde{F}_{2 k}}+\tilde{F}_{2 k+2} \\
& =\tilde{F}_{2 k+2}-\tilde{F}_{2 k}-1+\tilde{F}_{2 k+2} \\
& =\tilde{F}_{2 k+2}-\tilde{F}_{2 k}-1+\left(\tilde{F}_{2 k+4}-\tilde{F}_{2 k+3}\right) \\
& =\tilde{F}_{2 k+4}-\left(\tilde{F}_{2 k+3}\right)+\tilde{F}_{2 k+2}-\tilde{F}_{2 k}-1 \\
& =\tilde{F}_{2 k+4}-\left(\tilde{F}_{2 k+2}+\tilde{F}_{2 k+1}\right)+\tilde{F}_{2 k+2}-\tilde{F}_{2 k}-1 \\
& =\tilde{F}_{2 k+4}-\left(\tilde{F}_{2 k+1}+\tilde{F}_{2 k}\right)-1 \\
& =\tilde{F}_{2 k+4}-\tilde{F}_{2 k+2}-1 .
\end{aligned}
$$

This completes the proof of the theorem.
Theorem 6 For any integer positive n,

$$
\sum_{i=0}^{n} \tilde{F}_{2 i+1}=\tilde{F}_{2 n+3}-\tilde{F}_{2 n+1}-h
$$

Proof. By induction methods, for integer $n=1$, the equeation is true. Indeed;

$$
\begin{aligned}
\sum_{i=0}^{1} \tilde{F}_{2 i+1} & =\tilde{F}_{1}+\tilde{F}_{3}=(1+h)+(2+3 h) \\
& =3+4 h=\tilde{F}_{5}-\tilde{F}_{3}-h=(5+8 h)-(2+3 h)-h
\end{aligned}
$$

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

Now let the equation be true for $n=k$. That is,

$$
\sum_{i=0}^{k} \tilde{F}_{2 i+1}=\tilde{F}_{2 k+3}-\tilde{F}_{2 k+1}-h
$$

In this case, let's show that the equation is also true for $n=k+1$.

$$
\begin{aligned}
\sum_{i=0}^{k+1} \tilde{F}_{2 i+1} & =\underbrace{\tilde{F}_{3}+\tilde{F}_{5}+\cdots+\tilde{F}_{2 k+1}}_{\tilde{F}_{2 k+3}-\tilde{F}_{2 k+1}}+\tilde{F}_{2 k+3} \\
& =\tilde{F}_{2 k+3}-\tilde{F}_{2 k+1}-h+\tilde{F}_{2 k+3} \\
& =\tilde{F}_{2 k+3}-\tilde{F}_{2 k+1}-h+\left(\tilde{F}_{2 k+5}-\tilde{F}_{2 k+4}\right) \\
& =\tilde{F}_{2 k+5}-\left(\tilde{F}_{2 k+3}+\tilde{F}_{2 k+2}\right)+\tilde{F}_{2 k+3}-\tilde{F}_{2 k+1}-h \\
& =\tilde{F}_{2 k+5}-\left(\tilde{F}_{2 k+3}+\tilde{F}_{2 k+2}\right)+\tilde{F}_{2 k+3}-\tilde{F}_{2 k+1}-h \\
& =\tilde{F}_{2 k+5}-\left(\tilde{F}_{2 k+2}+\tilde{F}_{2 k+1}\right)-h \\
& =\tilde{F}_{2 k+5}-\tilde{F}_{2 k+3}-h .
\end{aligned}
$$

This completes the proof of the theorem.

3 References

[1] K. Akutagawa and S. Nishikawa, The Gauss Map and Spacelike Surfaces with Prescribed Mean Curvature in Minkowski 3-Space, Th"oko Math., J., 42, (1990), 67-82.
[2] F.T.Aydın, Hyperbolic Fibonacci sequence. Universal Journal of Mathematics and Applications, Cilt 2, Sayı 2. 2019;59-64.
[3] L. Barreira, L. H. Popescu and C. Valls, Hyperbolic Sequences of Linear Operators and Evolution Maps, Milan J. Math., 84, (2016), 203-216.
[4] G. Berzsenyi, Sums of Product of Generalized Fibonacci Numbers, Fibonacci Quart., 13(4), (1975), 343-344.
[5] F. Catoni, R. Boccaletti, R. Cannata, V. Catoni, E. Nichelatti and P. Zampatti, The Mathematics of Minkowski Space-Time, Birkhauser, Basel, 2008.
[6] O. Deveci and G. Artun, On the adjacency-Jacobsthal numbers. Comm. Algebra 47 (2019), no. 11, 4520-4532. (Reviewer: Mihai Cipu) 11B83 (11C20 15A15)
[7] H. Gargoubi and S. Kossentini, f-algebra structure on hyperbolic numbers, Adv. Appl. Clifford Algebr., 26(4), (2016), 1211-1233.
[8] A. N. Güncan and Y. Erbil, The q-Fibonacci hyperbolic functions, Appl. Math. Inf. Sci. 8 (1L), (2014), 81-88.
[9] A. F. Horadam, A Generalized Fibonacci sequence, American Math. Monthly, 68, (1961), 455-459.
[10] A. F. Horadam, Complex Fibonacci numbers and Fibonacci quaternions, American Math. Monthly 70(1963), 289-291.
[11] A. F. Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci Quart., 3(3), (1965), 161-176.
[12] M. R. Iyer, Identities involving generalized Fibonacci numbers, Fibonacci Quart., 7(1), (1969), 66-73.
[13] B. Jancewicz, The extended Grassmann algebra of R3, in Clifford (Geometric) Algebras with Applications and Engineering, Birkhauser, Boston, (1996), 389-421.
[14] D. Khadjiev and Y. Göksal, Applications of hyperbolic numbers to the invariant theory in two-dimensional pseudo-Euclidean space, Adv. Appl. Clifford Algebr., 26, (2016), 645-668.
[15] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, Proc., New York-Toronto, 2001.
[16] A. E. Motter and A. F. Rosa, Hyperbolic calculus, Adv. Appl. Clifford Algebr., 8(1), (1998), 109-128.
[17] J. G. Ratcliffe, Foundations of Hyperbolic Manifolds, Springer-Verlag, 1994.
[18] S. Vajda, Fibonacci and Lucas Numbers the Golden Section, Ellis Horrowood Limited Publ., England, 1989.
[19] J. E. Walton and A. F. Horadam, Some further identities for the generalized Fibonacci sequence, Fibonacci Quart., 12(3), (1974), 272-280.

COMMIITTEES

HONORARY COMMITTE	
Ömer ÇOMAKLI	Rector Prof. Dr. Atatürk University, Türkiye
Abdulhalik KARABULUT	Rector Prof. Dr.
Ağrı İbrahim Çeçen University, Türkiye	

CHAIR	
Furkan YILDIRIM	Assoc. Prof. Dr. Atatürk University, Türkiye

VICE-CHAIRMANS	
Çağrı KARAMAN	Assoc. Prof. Dr. Atatürk University, Türkiye

CO-CHAIRMANS	
Abdullah ÇAĞMAN	Asst. Prof. Dr. Ağrı İbrahim Çeçen University, Türkiye
İbrahim KARAHAN	Assoc. Prof. Dr. Erzurum Technical University, Türkiye

SECRETERIAT

Yeşim SARAÇ

```
Assoc. Prof. Dr.
Atatürk University, Türkiye
```


1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

COUNSEL COMMITTEE	
Alper ÇİLTAŞ	Prof. Dr. Atatürk University, Türkiye
Engin ÖZKAN	Prof. Dr. Erzincan Binali Yıldırım University, Türkiye
Kürşat AKBULUT	Prof. Dr. Atatürk University, Türkiye
Nejmi CENGİZ	Prof. Dr.
Atatürk University, Türkiye	

ORGANIZING COMMITTEE

Algebra and Number Theory	Prof. Dr. Engin ÖZKAN Erzincan Binali Yıldırım University, Türkiye
	Asst. Prof. Dr. Abdullah ÇAĞMAN Ağrı İbrahim Çeçen University, Türkiye
	Asst. Prof. Dr. Sait TAŞ Atatürk University, Türkiye
Applied Mathematics	Prof. Dr. Mustafa BAYRAM Biruni University, Türkiye
	Assoc. Prof. Dr. Yeşim SARAÇ Atatürk University, Türkiye
	Asst. Prof. Dr. Mesut KARABACAK Atatürk University, Türkiye

	Asst. Prof. Dr. Muhammed YİĞİDER Erzurum Technical University, Türkiye
	Asst. Prof. Dr. Sıdıka Şule ŞENER Atatürk University, Türkiye
Computer Teknologies	Lect. Süha GÖKALP Atatürk University, Türkiye
	Res. Asst. Yeter ÜNLÜ Atatürk University, Türkiye
Education	Dr. Zekai AYIK Harran University, Türkiye
Management Information Systems	Soft. Dev. Emir Sultan GÖKKAYA Atatürk University, Türkiye
	Lec. Yakup ÇíFTÇi Atatürk University, Türkiye
	Dr. Lec. Yasin SANCAR Atatürk University, Türkiye
Functional Analysis	Assoc. Prof. Dr. İbrahim KARAHAN Erzurum Technical University, Türkiye
	Assoc. Prof. Dr. Murat ÇAĞLAR Erzurum Technical University, Türkiye
	Asst. Prof. Dr. Fatma SAĞSÖZ Atatürk University, Türkiye
	Asst. Prof. Dr. Nazlı KARACA Atatürk University, Türkiye

UNIVERSTTY
pUBLICATION

	Res. Asst. Merve AKTAY Atatürk University, Türkiye
Geometry	Prof. Dr. Kürşat AKBULUT Atatürk University, Türkiye
	Prof. Dr. Nejmi CENGİZ Atatürk University, Türkiye
	Assoc. Prof. Dr. Ali ÇAKMAK Bitlis Eren University, Türkiye
	Assoc. Prof. Dr. Çağrı KARAMAN Atatürk University, Türkiye
	Assoc. Prof. Dr Fatma KARAKUŞ Sinop University, Türkiye
	Assoc. Prof. Dr. Furkan YILDIRIM Atatürk University, Türkiye
	Assoc. Prof. Dr. Mahmut AKYİĞİT Sakarya University, Türkiye
	Assoc. Prof. Dr. Seher ASLANCI Alanya Alaaddin Keykubat University, Türkiye
	Asst. Prof. Dr. Ayşenur UÇAR Doğuş University, Türkiye
	Asst. Prof. Dr. Sibel TURANLI Erzurum Technical University, Türkiye
	Dr.Olgun DURMAZ Atatürk University, Türkiye

Mathematics Education	Prof. Dr. Alper Cihan KONYALIOĞLU Atatürk University, Türkiye
	Prof. Dr. Alper ÇiLTAŞ Atatürk University, Türkiye
Topology	Prof. Dr. Ceren Sultan ELMALI Erzurum Technical University, Türkiye
	Prof. Dr. Tamer UĞUR Atatürk University, Türkiye
	Asst. Prof. Dr. Kadirhan POLAT Ağrı İbrahim Çeçen University, Türkiye
	Res. Asst. Tuğçe KUNDURACI Atatürk University, Türkiye
English	Asst. Prof. Dr. Şennur BAKIRTAŞ Atatürk University, Türkiye

SCIENTIFIC COMMITTEE	
Algebra and Number Theory	Prof. Dr. Andrzej WLOCH Rzeszdw University of Technology, Poland
	Prof. Dr. Anthony G. SHANNON Warrane College the UNSW, Australia
	Prof. Dr. Engin ÖZKAN
Erzincan Binali Yıldırım University, Türkiye	

	Prof. Dr. İnci GÜLTEKİN Atatürk University, Türkiye
	Assoc. Prof. Dr. Taras GOY Vasyl Stefanyk Precarpathian National University, Ukraine
	Asst. Prof. Dr. Abdullah ÇAĞMAN Ağrı İbrahim Çeçen University, Türkiye
	Asst. Prof. Dr. Rania KAMMOUN University of Sfax, Tunusia
	Asst. Prof. Dr. Sait TAŞ Atatürk University, Türkiye
	Asst. Prof. Dr. Udhayakumar RAMALİNGAM Vellore Institute of Technology, India
	Asst. Prof. Dr. Faiza SHUJAT Taibah University, Saudi Arabia
Applied Mathematics	Prof. Dr. Abdel Karim FEROUAN ESSAT,Algeria
	Prof. Dr. Ali KHALOUTA Ferhat Abbas Setif University 1, Algeria
	Prof. Dr. Carlo CATTANİ Tuscia University, Italy
	Prof. Dr. Changpin Lİ Shanghai University, China
	Prof. Dr. Hari Mohan SRİVASTAVA University of Victoria, Canada

	Prof. Dr. Hossein JAFARİ University of South Africa, South Africa
	Prof. Dr. Rene FONSECA Carnegie Mellon University, USA
	Prof. Dr. Jehad ALZABUT Prince Sultan University, Saudi Arabia
	Prof. Dr. Konstantinos LAZOPOULOS National Technical University of Athens, Greece
	Prof. Dr. Luis VAZQUEZ Complutense University of Madrid, Spain
	Prof. Dr. Mir Sajjad HASHEMI University of Bonab, Iran
	Prof. Dr. Mohammed AL-REFAİ Yarmouk University, Jordan
	Prof. Dr. Mokhtar KİRANE Khalifa University, United Arab Emirates
	Prof. Dr. Mustafa BAYRAM Biruni University, Türkiye
	Prof. Dr. Omar Abu ARQUB Al-Balqa Applied University, Jorda
	Prof. Dr. Praveen AGARWAL Anand International College of Engineering, India
	Prof. Dr. Rakib EFENDIEV Baku Engineering University, Azerbaijan

	Prof. Dr. Shahram REZAPOUR Azerbaijan Shahid Modanı University, Azerbaijan
	Prof. Dr. Snezhana HRİSTOVA Paisii Hilendarski University of Plovdiv, Bulgaria
	Prof. Dr. Soheil SALAHSHOUR Bahçeşehir University, Türkiye
	Prof. Dr. Thabet ABDELJAWAD Prince Sultan University, Saudi Arabia
	Assoc. Prof. Dr. Alireza KHASTAN Institute lor Advanced Studies in Basic Sciences, Iran
	Assoc. Prof. Dr. Dayan LİU 1NSACentre Vai de Loire, France
	Assoc. Prof. Dr. Ion Mierluş MAZİLU Technical Universityof Civil Engineering of Bucharest. Romania
	Assoc. Prof. Dr. Muhammad Imran ASJAD University of Management and Technology, Pakistan
	Assoc. Prof. Dr. QaziMahmood UL-HASSAN University of Wah, Pakistan
	Assoc. Prof. Dr. Safar Irandoust PAKCHIIN University of Tabriz, Iran
	Assoc. Prof. Dr. Saiful Rahman MONDAL ing Faisal University, Saudi Arabit
	Assoc. Prof. Dr. Sebti KERBA Sultan Qaboos University, Oman

	Assoc. Prof. Dr. Yeşim SARAÇ Atatürk University, Türkiye
	Asst. Prof. Dr Mohamed Amine BOUBATRA Teacher Education College of Setif, Algeria
	Asst. Prof. Dr Ashok D. GODASE Vinayakrao Patil College, India
	Asst. Prof. Dr Ajit Kumar SiNGH Amity University, United Arab Emirates
	Asst. Prof. Dr Arzu AYKUT Atatürk University, Türkiye
	Asst. Prof. Dr Baljinder KOUR Akai University, India
	Asst. Prof. Dr Dinesh KUMAR Agriculture University, Pakistan
	Asst. Prof. Dr Krunal KACHHİA Charotar University of Science and Technology, India
	Asst. Prof. Dr Mesut KARABACAK Atatürk University, Türkiye
	Asst. Prof. Dr Muhammed YİĞíder Erzurum Technical University, Türkiye
	Asst. Prof. Dr Ouaddah ABDELHAMID University Mustapha Stambouli of Mascara, Algeria
	Asst. Prof. Dr. Ricardo ALMEIDA University of Aveiro, Portugal

	Asst. Prof. Dr. Said BELOUL University of ElOued, Tunusia
	Asst. Prof. Dr. Shailesh BHANOTAR L J Institute of Engineering And Technology, India
	Asst. Prof. Dr. Sidıka Şule ŞENER Atatürk University, Türkiye
	Asst. Prof. Dr. Turgut YELOĞLU Sinop University, Türkiye
	Prof. Dr. Mohamed KHARRAT University of Sfax, Tunusia
Bioinformatics and Computational Biology	Prof. Dr. Sandro Rodrigues MAZORCHE Federal University of Juiz de Fora, Brazil
Discrete Mathematics	Prof. Dr. Richard ANSTEE University of British Columbia, Canada
Education	Dr. Zekai AYIK Harran University, Türkiye
Engineering	Prof. Dr. Qasem Al MDALLAL United Arab emirates university, united Arab Emirates
Functional Analysis	Prof. Dr. Abdelaziz MENNOUNİ University of Batna 2, Algeria
	Prof. Dr. Ali FARAJZADEH Razi University-Kermanshah, Iran
	Assoc. Prof. Dr. İbrahim KARAHAN Erzurum Technical University, Türkiye

	Assoc. Prof. Dr. Murat ÇAĞLAR Erzurum Technical University, Türkiye
	Asst. Prof. Dr. Fatma SAĞSÖZ Atatürk University, Türkiye
	Asst. Prof. Dr. Khaled TKHACHNAOUI University of Kairouan, Tunusia
	Asst. Prof. Dr. Nazlı KARACA Atatürk University, Türkiye
Geometry	Prof. Dr. Arif SALIMOV Baku State University, Azerbaijan
	Prof. Dr. Aydın GEZER Atatürk University, Türkiye
	Prof. Dr. Fouzi HATHOUT University of Saida, Algeria
	Prof. Dr. Josef MIKESH Palacky University, Czech Republic
	Prof. Dr. Prof. Dr. Kürşat AKBULUT Atatürk University, Türkiye
	Prof. Dr. Nejmi CENGIZ Atatürk University, Türkiye
	Prof. Dr. Ömer TARAKÇI Atatürk University, Türkiy
	Assoc. Prof. Dr. Adela MIHAI Tecnical University Of Çivil Engineering Of Bucharest, Romania
	Assoc. Prof. Dr. Ali ÇAKMAK Bitlis Eren University, Türkiye

	Assoc. Prof. Dr. Anton BETTEN Colorado State University, USA
	Assoc. Prof. Dr. Boudjemaa Anchouche Kuwait University, Kuwait
	Assoc. Prof. Dr. Çağrı KARAMAN Atatürk University, Türkiye
	Assoc. Prof. Dr Fatma KARAKUŞ Sinop University, Türkiye
	Assoc. Prof. Dr. Furkan YILDIRIM Atatürk University, Türkiye
	Assoc. Prof. Dr. Mahmut AKYİĞíT Sakarya University, Türkiye
	Assoc. Prof. Dr. Seher ASLANCI Alanya Alaaddin Keykubat University, Türkiye
	Asst. Prof. Dr. Ayşenur UÇAR Doğuş University, Türkiye
	Asst. Prof. Dr. Semra YURTTANÇIKMAZ Atatürk University, Türkiye
	Asst. Prof. Dr. Sibel TURANLI Atatürk University, Türkiye
Mathematical Analysis	Prof. Dr. Doria AFFANE University of Jijel, Algeria
	Prof. Dr. Halit ORHAN Atatürk University, Türkiye

	Prof. Dr. İsa Yıldırım Atatürk University, Türkiye
	Prof. Dr. Mustapha Fateh YAROU University of Jijel, Algeria
	Prof. Dr. Sezqin Akbulut Atatürk University, Türkiye
	Assoc. Prof. Dr. Asifa TASSADDİQ Majmaah University, Saudi Arabia
	Asst. Prof. Dr. Mohammad Esmael SAMEİ Bu-Ali Sina University, Iran
Mathematical Modelling	Prof. Dr. George ANASTASSIIOU The University of Memphis, USA
	Prof. Dr. Jordan HRİSTOV University Of Chemical Tecnology And Metallurgy, Bulgaria
	Asst. Prof. Dr. Abdelhakim IDIR Mohamed Boudiaf University of M'sila, Algeria
	Asst. Prof. Dr. Chokkalingam RAVICHANDRAN Kongunadu Arts and Science College, India
	Asst. Prof. Dr. Devendra KUMAR University of Rajasthan, India
Mathematical Statistics	Asst. Prof. Dr. Mohammad Reza MAHMOUDİ Fasa University, Iran
Mathematics Education	Prof. Dr. Alper Cihan KONYALIOĞLU Atatürk University, Türkiye

unsum

	Prof. Dr. Alper ÇiLTAŞ Atatürk University, Türkiye
Quantum Mechanics	Prof. Dr. Jihad ASAD Palestine Technical University, Palestine
Topology	Prof. Dr. Ceren Sultan ELMALI Erzurum Technical University, Türkiye
	Prof. Dr. Tamer UĞUR Atatürk University, Türkiye
	Asst. Prof. Dr. Kadirhan POLAT Ağrı İbrahim Çeçen University, Türkiye
	Asst. Prof. Dr. Nuray GÜL Bitlis Eren University, Türkiye

ATATÜRK
ÜNIVERSİTESİ
YAYINLARI
ATATURK
UNIVERSITY
pUBLICATIONS

SCIENTIFIC PROGRAM

Note that all times listed on the schedule are shown as $U T C / G M T+3$, i.e. the time in TURKEY.
Please, gauge the time difference to your time zone.

Note that all times listed on the schedule are shown as UTC/GMT +3 , i.e. the time in TURKEY.
May 23, 2022

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

Link			
MAIN HALL	09:30-11:00	Openning Ceremony	
MAIN HALL	11:00-11:30	Prof. Dr. Ahmet Işık (Kırıkkale University-Türkiye) Mathematics and Mathematics Education	
MAIN HALL	11:30-12:00	Prof.Dr. Bismark Singh (Friedrich-Alexander University-Germany) Optimization Models for Pandemic Response Planning	
	12:00-13:00	Break	
Lecture Room		Invited Speaker	Chairman
MAIN HALL	13:00-13:30	Prof. Dr. Arif Salimov (Bakü University - Azerbaijan) New Developments in the Theory of Lifts	Kürşat AKBULUT
	13:30-13:45	Break	

Link				
Lectur	Room	Session	Speakers	Chairman
$$	$\overline{7}$0$\vdots$$\sqrt{n}$$\square$	13:45-14:00	Some Density Properties in Bitopological Context Necati Can ACIKGÖZ, Ceren Sultan ELMALI	
		14:00-14:15	Fixed-Point Theorems in Extended Fuzzy Metric Spaces Via Some Fuzzy Contractive Mappings Meryem Şenocak, Erdal Güner	
		14:15-14:30	The Attitudes and Self-Efficiens of High School Students Continued the Distance Mathematics Course Against Distance Education During the COVID-19 Pandemic Başak Bor Akbulut	
		14:30-14:45	Historical-Philosophical Development and Teaching of Mathematical Objects Fatih Tas	
		14:45-15:00	On the Controllability of Some Systems on Lie Groups \square Okan Duman	
		15:00-15:15	Break	

ABSTRACT AND FULL TEXT SYMPOSIUM BOOK

Link				
Lecture Room		Session	Speakers	Chairman
$$		13:45-14:00	On a solvable system of rational difference equations of higher order Merve Kara, Yasin Yazlik	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 4 \\ & 4 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
		14:00-14:15	Blow up of solution of a nonlinear wave equation with general source and damping terms Boulmerka Imane	
		14:15-14:30	Global non-existence of solutions for a nonlinear viscoelastic plate equation with a $p(x, t)$-Laplacian operator in the presence of time delay Merah Ahlem, Mesloub Fatiha	
		14:30-14:45	Schauder and Banach fixed point theorem for semilinear fractional problem Chaima Saadi, Hakim Lakhal, Kamel Slimani	
		14:45-15:00	Solving the absolute value equation based on a new smoothing function Randa Chalekh, EL Amir Djeffal	
15:00-15:15			Break	

Link				
Lecture Room		Session	Speakers	Chairman
$\begin{aligned} & 3 \\ & \\ & \end{aligned}$	\bar{z}0कजज	13:45-14:00	Solving One-Dimensional Bratu's Problem via Kashuri Fundo Decomposition Method Haldun Alpaslan Peker, Fatma Aybike Çuha	
		14:00-14:15	On predictors of partial parameters under a partitioned linear model and its reduced models Nesrin Güler, Melek Eriş Büyükkaya, Melike Yiğit	
		14:15-14:30	Optimal control of a fractional SIR model under the effect of nonlinear incidence and recovery rates Fatma Soytürk, Derya Aveı	
		14:30-14:45	Existence and uniqueness results for a revisited Nicholson's blowflies model with two different variable delays and a nonlinear harvesting term Ahleme Bouakkaz, Rabah Khemis	
		14:45-15:00	General decay of solutions in one-dimensional porous-elastic system with memory and distributed delay term with second sound Fares Yazid, Fatima Siham Djeradi	
		15:00-15:15	Break	

Lin				
Lecture Room		Session	Speakers	Chairman
学		15:15-15:30	The Drazin Inverse for Closed Linear Operators Mohammed Drissi-Alami ,Mohammed Kachad	
		15:30-15:45	Some Fixed Point Results in Soft Fuzzy Metric Spaces	
			Merve İnce, Ferhan Şola Erduran	
		15:45-16:00	Some Fixed Point Theorems on O-Complete Metric Spaces Kübra ÖZKAN	
		16:00-16:15	Homotopy and Descriptive Homotopy in Computational Proximity Tane VERGILí, James Francis Peters	
		16:15-16:30	Trellis theory and some new results Abdelkrim Mehenni , Lemnaouar Zedam	

Li				
Lecture Room		Session	Speakers	Chairman
	$\begin{aligned} & \text { N } \\ & \underset{\sim}{z} \\ & \underset{\sim}{n} \\ & \text { ज्n } \end{aligned}$	15:15-15:30	Existence and nonexistence of positive solutions to a fractional parabolic problem with singular weight at the boundary Kheireddine Biroud	
		15:30-15:45	On the boundary observability and controllability of the wave equation in some non-cylindrical domains Seyf Eddine Ghenimi, Abdelmouhcene Sengouga	
		15:45-16:00	Existence and uniqueness results for nonlinear hybrid implicit Caputo-Hadamard fractional differential equations Chahra Kechar, Abdelouaheb Ardjouni	
		16:00-16:15	Complexity analysis of a primal-dual interior-point method for convex quadratic optimization based on a new hyperbolic Youssra Bouhenache, Wided Chikouche, Imene Toui	
		16:15-16:30	On the asymptotic behaviour of a non-local eigenvalue problem Ahlem Yahiaoui, Senoussi Guesmia, Abdelmouhcene Sengouga	

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

Note that all times listed on the schedule are shown as UTC/GMT +3, i.e. the time in TURKEY.

May 24, 2022

Link				
Lecture Room		Session	Speakers	Chairman
$\begin{aligned} & \text { N } \\ & \underset{Z}{3} \end{aligned}$		10:15-10:30	On Eight Solvable Systems of Difference Equations in Terms of Generalized Padovan Sequences Merve Kara, Yasin Yazlik	$\begin{aligned} & \frac{\pi}{4} \\ & \underset{y}{6} \\ & \frac{1}{2} \\ & \frac{2}{4} \end{aligned}$
		10:30-10:45	A pointwise Carleman inequality for the general ultrahyperbolic Schrödinger equation Özlem Kaytmaz	
		10:45-11:00	Solvability of an Inverse Problem for a Kinetic Equation on a Riemannian Manifold Ismet Gölgeleyen	
		11:00-11:15	Numerical Solution of simple mechanical systems with deep learning Tayfun Ünal, Ayten Irem Işık, Ünver Çiftçi	
		11:15-11:30	Uniqueness of solution of an inverse problem for the ultrahyperbolic Schrödinger equation Özlem Kaytmaz	
		11:30-11:45	A finite difference method based on the operator for the numerical solution of an inverse source problem backward in time Ali Ugur Sazaklioglu	
		11:45-12:00	Feedback stabilization of bilinear systems Ayoub Cheddour	

ABSTRACT AND FULL TEXT SYMPOSIUM BOOK

Link				
Lecture Room		Session	Speakers	Chairman
		13:45-14:00	Universal Covering of a Lie Group Merve Ersoy, Eyüp Kızıl	
		14:00-14:15	Inquiry-Based Learning: A Bibliometric Analysis Seher Aslancı	
		14:15-14:30	Examining the perceptions of anatolian vocational high school students on mathematics through metaphors Ömer Demirci, Özlem Demirci	
		14:30-14:45	Associated curves of a framed curve in Euclidean 3-space Zeynep Bülbül, Mustafa Düldül	
		14:45-15:00	On the cosine curve as 4th and 6th order BÈzier curve in E2 Şeyda Kılıçoğlu	
		15:00-15:15	Break	

Link				
Lecture Room		Session	Speakers	Chairman
$\begin{aligned} & \text { N } \\ & \underset{Z}{3} \end{aligned}$	$$	13:45-14:00	Rational Decay Rate for the Wave equation with non-neglected Density Karima LAOUBI	
		14:00-14:15	A Dynamic electroviscoelastic problem with thermal effects Sihem Smata, Nemira Lebri	پِح
		14:15-14:30	Limit cycles of a class of planar polynomial differential systems Amel Boulfoul, Nassima Debz, Abdelhak Berkane	$\underset{y}{8}$
		14:30-14:45	A Derivative-Free algorithm for continuous global optimization Raouf Ziadi	$\underset{\substack{0 \\ 0}}{\substack{0 \\ 0}}$
		14:45-15:00	Well-posedness and energy decay of swelling porous elastic soilswith a second sound and distributed delay term Sabah Baibeche	
15:00-15:15			Break	

Link				
Lecture Room		Session	Speakers	Chairman
$$		13:45-14:00	A characterization of open distance pattern uniform chordal graphs and distance hereditary graphs Bibin K. Jose	Esra ALTINTAŞ
		14:00-14:15	Approximate controllability results for Caputo fractional Volterra-Fredholm integro-differential systems of order $1<\mathrm{r}<2$ M. Mohan Raja, V. Vijayakumar	
		14:15-14:30	Uniform well-posedness and stability for fractional Navier-Stokes equations with Coriolis force in critical Fourier-Besov-Morrey spaces Ahmed El Idrissi, Brahim El Boukari, Jalila El Ghordaf	
		14:30-14:45	A new primal-dual interior-point algorithm for linear programming L. Derbal, Z. Kebbiche	
		14:45-15:00	Some new results on periodic solutions for a periodic delay hematopoiesis model with a unimodal production function Rabah Khemis, Ahleme Bouakkaz	
15:00-15:15			Break	

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

Lecture Room		Session	Speakers	Chairman
ت	mznजan	15:15-15:30	Relative cohomology spaces for some $\operatorname{osp}(\mathrm{n} \mid 2)$-modules. Wafa Mtaouaa, Didier Arnal, Mabrouk Ben Ammar, Zeineb Selmi	$\begin{aligned} & \text { Z } \\ & \text { 空 } \\ & \text { U } \\ & \text { n } \\ & \text { E } \\ & \frac{0}{6} \end{aligned}$
		15:30-15:45	On integral bases and monogeneity of certain pure number fields defined by $\mathrm{x}^{\wedge} \mathrm{p}{ }^{\wedge} \mathrm{r}-\mathrm{a}$ Omar Kchit , Hanan Choulli, Lhoussain El Fadil	
		15:45-16:00	Groups whose proper subgroups of infinite rank are hypercentral-by-finite Amel Dilmi , Nadir Trabelsi	
		16:00-16:15	Diophantine approximation by prime numbers of a special form Tatiana Todorova	
		16:15-16:30	Symmetric functions for (p, q)-numbers and Pell Lucas polynomials Meryem Bouzeraib, Ali Boussayoud	

Li				
Lecture	Room	Session	Speakers	Chairman
	$\begin{aligned} & \text { n } \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \\ & \end{aligned}$	15:15-15:30	Stabilization for wave beam equation with a local Degenerated Kelvin-Voigt Damping Rania Yahia	
		15:30-15:45	Growth of solutions of linear fractional differential equations with entire coefficients Sofiane Mahmoudi, Saada Hamouda	
		15:45-16:00	Sufficient conditions for global asymptotic stability of a kind of nonlinear neutral differential equations Benhadri Mimia	
		16:00-16:15	A Solution Algorithm for An Inverse Problem for the Kinetic Equation which Involves Poisson Bracket Muhammed Hasdemir, İsmet Gölgeleyen	
		16:15-16:30	Dynamical behavior of a differential-algebraic system with fractional order Kerioui Nadjah	
Link				
Lecture Room		Session	Speakers	Chairman
药		15:15-15:30	Cohen positive strongly p -summing m -homogeneous polynomials from a tensor viewpoint Halima Hamdi, Amar Belacel	
		15:30-15:45	Truncated condition for second order perturbed sweeping process Imene Mecemma, Sabrina Lounis, Mostapha Fateh Yarou	
		15:45-16:00	An existence result for a class of nonconvex second order differential inclusions Fetouci, M. F. Yarou	
		16:00-16:15	Existence problem for first order evolution inclusion Nouha Boudjerida, Doria Affane, Yarou Mustapha Fateh	
		16:15-16:30	Some fixed point theorems for a Generalized cyclic ($\alpha, \mathrm{f}, \phi, \psi$)-contractive mapping in b-Metric-Like Spaces Merad Souheib	

Note that all times listed on the schedule are shown as UTC/GMT +3, i.e. the time in TURKEY.
May 25, 2022

Link			
Lecture Room	Session	Invited Speaker	Chairman
MAIN HALL	9:30-10:00	Assoc. Prof. Dr. Murat Kíkişçí (Istanbul University - Cerrahpaşa - Türkiye) On the artificial intelligence, big data, blockehain technologies in medicine	Sait TAS
10:00-10:15		Break	

ABSTRACT AND FULL TEXT SYMPOSIUM BOOK

Lecture Room		Session	Speakers	Chairman
تِ		10:15-10:30	A New Approach Tubular Surface with a new frame in G3 Gökhan Mumcu, Ali Çakmak, Tülay Erişir, Sezai Kızıltuğ	
		10:30-10:45	Receiving Student Opinions Within The Scope of Geometry Lessons Taught Using Activities Regarding Different Demo Esra Altıntaş, Sükrü İlgün, Sümeyye Güneş	
		10:45-11:00	Examination of Preservice Teachers' Mathematical Thinking and Modeling Skills Zeynep ÍĞDELİ, Okan KUZU, Osman ÇİL	
		11:00-11:15	Bibliometric Analysis of Scientific Studies on "Noticing Skill" in Mathematics Education Ercan Dede, Ercan Özdemir	
		11:15-11:30	Examination of Mathematics Questions in Secondary Education Transition Exam According to Revised Bloom Taxonomy and Middle School Mathematics Curriculum Objectives Zeynep Büşra Üzümcü, Ali Sabri İpek	
		11:30-11:45	Reflections of Developed Problem Posing Based Active Learning Activities in the Teaching Process: Example of Fractions Hatice Polat, Merve Özkaya	
		11:45-12:00	Examining Secondary School 7th Grade Mathematics Activities within the Scope of Harezmian Education Model and Obtaining Students' Opinions Esra Altıntaş, Şükrü İlgün, Sümeyye Güneş	

Lectur	Room	Session	Speakers	Chairman
N		10:15-10:30	Comparison of Two Effective Methods on Numerical Solutions of Differential Equations Özlem Soylu, Onur Karaoğlu	炰
		10:30-10:45	The Dirichlet Problem for the Polyanalytic Equations in a Ring Domain İlker Gençtürk	
		10:45-11:00	A Finite Difference Scheme for Singularly Perturbed Neutral Type Differential Equations Yilmaz Ekinci, Erkan Cimen, Musa Cakir	
		11:00-11:15	A Numerical Approach for System of Ordinary Differential Equations Șevket Üncü, Erkan Cimen	
		11:15-11:30	Solving Abel's Integral Equation by Kashuri Fundo Transform Fatma Aybike Çuha, Haldun Alpaslan Peker	
		11:30-11:45	Immigration and Qualitative Behavior of a Two-Dimensional Discrete-Time Model Seval Işık, Figen Kangalgil, Feda Gümüşboğa	
		11:45-12:00	B-spline method for solving fractional delay differential equations Mwaffag Sharadga, Muhammed Syam, Ishak Hashim	

Lectur	oom	Session	Speakers	Chairman
n		10:15-10:30	Generalized Spherical Fuzzy Hamacher Aggregation Operators Elif Güner, Halis Aygün	
		10:30-10:45	Fekete-Szegö problem for a subclass of bi-univalent functions associated with Gegenbauer polynomials Murat Çağlar, Mucahit Buyankara	
		10:45-11:00	A numerical approach for a class of singularly perturbed differential-difference equation Erkan Cimen	
		11:00-11:15	Durrmeyer-type generalization of some linear positive operators Kadir Kanat, Melek Sofyalıoğlu, Selin Erdal	
		11:15-11:30	Local existence of solutions for a quasilinear hyperbolic equation involving the p -laplacian operator Abir Bounaama	
		11:30-11:45	A generalized exponential expansion method to simulate two third-order KdV-type equations Riadh Hedli, Fella Berrimi	
		11:45-12:00	Comparatıve numerical study between line search methods and minorant functions in barrier logarithmic methods for linear programming Assma LEULMI, Soumya LEULMI	

1st INTERNATIONAL SYMPOSIUM ON CURRENT DEVELOPMENTS IN FUNDAMENTAL AND APPLIED MATHEMATICS SCIENCES (ISCDFAMS 2022)

Link				
Lecture Room			Invited Speaker	Chairman
MAIN HALL		13:00-13:30	Prof. Dr. Josef Mikesh (Palacky University - Czech Republic) Geodesics Mappings and Their Generalizations	Yaprak DERİCIOĞLU
		13:30-13:45	Break	
Link				
Lecture Room		Session	Speakers	Chairman
$$	$\begin{aligned} & \text { N } \\ & \vdots \\ & \vdots \\ & \bar{W} \\ & \sqrt{n} \\ & \hline \end{aligned}$	13:45-14:00	Generalized Fermi Derivative on Surfaces in Euclidean 3-Spaces Ayşenur Uçar, Fatma Karakuş	
		14:00-14:15	Generalized Fermi Derivative with Regard to Hypersurfaces Ayșenur Uçar, Fatma Karakuş	
		14:15-14:30	The Study of Pre- Service Mathematics teachers Approach on Students Misunderstandings for Four Possible Answers to Solve a Problem Samad Shabanifar, Manouchehr Behboudi Asl	
		14:30-14:45	Parallel Transported Along Dual Lorentzian Spacelike And Timelike Curves Fatma Karakuş, Tevfik Şahin, Yusuf Yaylı	
		14:45-15:00	Darboux Frame with Respect to Generalized Fermi-Walker Derivative Ayşenur Uçar, Fatma Karakuş, Yusuf Yayh	
15:00-15:15				
Link				
Lecture Room		Session	Speakers	Chairman
$\xrightarrow[1]{N}$		13:45-14:00	Analysis of a Electro-Elastic contact problem with wear and unilateral constraint Laldja Benziane, Nemira Lebri	$\begin{aligned} & \text { U゙ } \\ & \text { K } \\ & \text { un } \\ & \text { Z } \\ & \text { Z } \end{aligned}$
		14:00-14:15	Berge equilibrium in random bi-matrix game Djebara Sabiha, Achemine Farida, Zerdani Ouiza	
		14:15-14:30	Resolution a problem of quantum mechanics in fractional dimensional space Hadjer Merad, Míhamed Hadj Moussa	
		14:30-14:45	Existence and uniqueness of positive periodic solutions for a kind of first order neutral functional differential equations with variable delays Lynda Mezghiche, Rabah Khemis, Ahleme Bouakkaz	
		14:45-15:00	Unlike classical processes, linearizing first, then discretizing is the better process to solve systems of nonlinear integral equations I. Sedka, A. Khellaf, M. Z. Aissaoui	
15:00-15:15			Break	
Link				
Lecture	Room	Session	Speakers	Chairman
M	$\begin{aligned} & \text { N } \\ & \text { z} \\ & 0 \\ & = \\ & \text { N } \\ & \text { n } \end{aligned}$	13:45-14:00	Existence, uniqueness and stability results for a neutral Mackey-Glass type delay differential equation with an iterative production term Marwa Khemis, Ahleme Bouakkaz	$\begin{aligned} & \tilde{U} \\ & Z \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \\ & 0 \end{aligned}$
		14:00-14:15	Local linear estimation of a conditional quantile for randomly censored functional depandent data Sarra Leulmi, Farid Leulmi	
		14:15-14:30	Modelling of Pancreatic Beta-cells with Gap-junction Murat An, Vehbi Yıldırım	
		14:30-14:45	Existence, uniqueness and stability of solutions for a first order iterative functional differential equation Safa Chouaf, Rabah Khemis, Ahleme Bouakkaz	
		14:45-15:00	An Existence Study for a Tripled System with p-Laplacian Involving φ-Caputo Derivatives Hamid Beddani	
15:00-15:15			Break	

ABSTRACT AND FULL TEXT SYMPOSIUM BOOK

