EXPERIMENTAL AND NUMERICAL STUDY ON EFFECTS OF NEW-GENERATION FINNED HEAT EXCHANGER ON THERMAL PERFORMANCE OF THERMOELECTRIC COOLING SYSTEMS


Muratçobanoğlu B., Mandev E., ÖMEROĞLU G., Akpınar F., Öz E., Afshari F.

Heat Transfer Research, cilt.55, sa.5, ss.41-57, 2024 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 55 Sayı: 5
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1615/heattransres.2023048779
  • Dergi Adı: Heat Transfer Research
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Communication Abstracts, Compendex, INSPEC, Metadex, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.41-57
  • Anahtar Kelimeler: CFD simulation, cooling performance, heat exchanger, thermoelectric
  • Atatürk Üniversitesi Adresli: Evet

Özet

In this study, an attempt has been made to increase the efficiency of the thermoelectric refrigerator by designinig a new-generation finned heat exchanger. Surface extension, which is one of the most applied passive heat transfer enhancement techniques, was applied for this finned heat exchanger. In this application, the heat absorbed from the cooling room is transferred to the external environment more effectively. In addition, by using an external thermoelectric element (which is installed with the secondary heat exchanger), the heat exchanger cools down faster and the heat is transferred to the environment more quickly. The manufactured cooling system was tested experimentally under different working conditions, including natural and forced convection. The effects of air velocity and applied voltage to the external TE module on thermal performance were examined. Additionally, the external finned heat exchanger has been simulated and heat transfer characteristics have been evaluated using computational fluid dynamics. The lowest and highest COP values have been obtained as 0.003 and 0.011, respectively, when the external TE module has been passive. By providing 12 V for the external TE module, the lowest and highest COP values have been observed as 0.0031 and 0.0042, respectively. In addition, the importance of surface extension applications for the efficient operation of thermoelectric elements has been emphasized.