Chapter 5

Riemannian Manifolds

In this chapter we want to introduce the notion of an “intrinsic geom-
etry” without making reference to an ambient space IR"*!, not only
locally, but also as a global notion. This continues the considerations
of Chapter 4. The most important tools for this are on the one hand,
from a local point of view, a notion of “first fundamental form” inde-
pendent of an ambient space IR™*! (similar to the notion of intrinsic
geometry in the previous chapter), and on the other hand, from a
global point of view, the notion of a “manifold”. The local notion goes
back essentially to the famous lecture of Riemann!, which explains
the modern notions Riemannian geometry, Riemannian manifold and
Riemannian space. From the point of view of the development in the
book up to now, this is motivated on the one hand by the intrinsic ge-
ometry of surfaces, including the Gauss-Bonnet theorem, and on the
other hand by the natural occurrence of such spaces which can not in
any meaningful way be embedded as hypersurfaces in some IR", as for
example the Poincaré upper half-plane as a model of non-Euclidean
geometry. Furthermore, the space-times of 3+ 1 dimensions which are
considered in general relativity do not admit an ambient space in a
natural way. This motivates the intention of explaining all geometric
quantities in a purely intrinsic manner.

'B. Riemann, Uber die Hypothesen, welche der Geometrie zu Grunde liegen, edited
by H. Weyl, Springer, 1921; see also [7], Vol. II, Chapter 4.
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202 5. Riemannian Manifolds

In the previous Chapters 3 and 4 we have basically been considering
surface clements f: U — IR™!, where U C IR™ was a given open set.
From a geometric point of view, we are really more interested in the
image set f(U) than we are in the map f itself. Nonetheless, for a
description and for local calculations we do use the parameter set U
and the parametrization f:

Usu p = f(u) € f(U).

If we decide that the basic object we are considering is the image
f(U), then we come to view the inverse mapping
f—l
f)sp — uelU

as an image which is “thrown” from f(U), in order to carry out
calculations in U. This map is called a “chart” in what follows, which
should be thought of as creating a “map” (but the word “map” has
a fixed, different meaning in mathematics, so that one uses “chart”
instead), and a set of charts which cover the object of interest forms an
“atlas”, just as a world atlas contains a map containing an arbitrary
location on the earth. For the mathematical notion this means that
every point has a neighborhood which is contained in one of the charts,
in which local computations near that point can be carried out in the
corresponding set I/. What we have to be able to guarantee is that all
defined notions are independent of the choice of charts used, just as
the Gaussian curvature in the theory of surfaces was independent of
the parametrization. In particular, we need to carefully consider the
transformations which map us from one chart into a different, nearby
one.

5A The notion of a manifold

We have already met submanifolds of IR™ in the form of zero sets
of differentiable maps, cf. Chapter 1. If there is no ambient space
to begin with, this definition no longer makes any sense. Instead,
one uses a description in terms of local coordinates in the form of
parametrizations or charts, just as one considers maps of the earth to
approximate that round object by flat pictures. Note that the chart
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maps go in the opposite direction from the usual parametrization we
have been using up to now.

5.1. Definition. (Abstract differentiable manifold)
A k-dimensional differentiable manifold (briefly: a k-manifold) is
a set M together with a family (M;);e; of subsets such that
1. M ={J;c; M; (union),
2. for every i € I there is an injective map ;: M; — IR* so that
©i(M;) is open in IR*, and
3. for M; N M; # 0, w;(M; N M;) is open in IRF, and the com-
position
¥y © ‘P;lz @i(M; 0 M) — w;(M, N M;)

is differentiable for arbitrary ¢, j.

M,  MnM;, M,

M

P
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Figure 5.1. Charts on a manifold

Each ¢, is called a chart, 50;1 is referred to as the parametrization, the
set ©;(M;) is called the parameter domain, and (M;, v;),e; is called an
atlas. The maps p;op; 1 @;(M;NM;) — @;(M;NM;), defined on the
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intersections of two such charts, are called coordinate transformations
or transition functions. Without restriction of generality, we may
assume that the atlas is maximal with respect to adding more charts
satisfying the conditions 2 and 3 above. A maximal atlas in this sense
is then referred to as a differentiable structure.

EXAMPLES:

1. Every open subset U of IR is a k-manifold, where a single chart
is sufficient for the entire manifold, namely the inclusion map
@: U — IRF. Condition 3 is trivially satisfied in this case.

2. Every k-dimensional submanifold M of IR™ (cf. Chapter 1) is
also a k-dimensional manifold in the sense of the above defini-
tion. If M is given locally by M = {z € R"™ | F(z) = 0},
where F': IR* — [R"* is a continuously differentiable submer-
sion (i.e., the differential DF is surjective, or in other words
Rank(DF) = n — k), then according to the implicit functions
theorem one can locally solve the equation

F(z',...,2™) =0
(perhaps after a renumbering) in the explicit form

¢t = wk“(scl, .. .,:rk),

gt = 2o, ...,1b).

By making the association

(xt,... 28— (b, . 2k 2R e,

we get a parametrization, while the association (z!,...,z")
1

3. The (abstract) torus IR?%/Z? is defined as the quotient (group) of
these two Abelian groups. To give it a differentiable structure,
one defines charts by starting with arbitrary open sets M; in
IR? (more precisely, take their images in the quotient) which are
contained in the open square (zo— %, o+ %) x (Yo — %, Yo+ %) for
an arbitrary point (xo,%0) € IR?. Then set ¢(x,y) := (x—x0, y—
yg) to obtain one chart (depending on the choice of (xg,yo)). It

— (2!, ..., z%) gives us a chart.
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follows that the coordinate transformations are just translations
in IR?. One sees without difficulty that three of these charts
suffice to cover the image, namely the just mentioned squares
centered at the points (0,0), (%, %), (%, %) Two such sets do
not suffice.

Similar results, with appropriate modifications, hold also for the
n-dimensional torus R" /Z".

4. The (abstract) Klein bottle is a quotient of the two-dimensional
torus by the involution (z,y) ~ (z + 3, —y). We may take any
square in the (z,y)-plane whose length in the z-direction is at
most % and whose length in the y-direction is at most 1, as
charts.

5. The real projective plane is the quotient of the two-sphere
RP? .= §?] ~,

where the equivalence relation is given by z ~ —z. We may
take any open set in S? as M;, provided it is contained in a
hemisphere (by which we mean half a sphere), and in particular
contains no antipodal points. ¢ can be defined as a projection
to a hemisphere, followed by a projection of this onto a disc.

A model of this is the closed disc modulo the identification of
the antipodal pairs of points on the boundary. On the other
hand, the “classical” model of projective geometry is all of IR?
with an added “line at infinity”.

An atlas of the projective plane containing three charts can be
constructed as the charts induced by the centrally symmetric
atlas on S?, which consists of the six hemispheres in the three

directions (z!, 2%, 23).

6. The rotation group SO(3) is defined as the set of all (real) or-
thogonal (3 x 3)-matrices with determinant equal to 1. We show
that it is a 3-manifold by defining the Cayley map

CAY: R® - SO(3), CAY(A):=(1+A)(1- A",
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Here 1 denotes the unit matrix, and A denotes the skew-symmet-

ric matrix
0 a b
A= —-a 0 ¢
b —c O

with real parameters a,b, ¢, which can also be viewed as an ele-
ment of IR3. The Cayley map is injective, and the inverse map
can be used as a chart of SO(3) and determined as follows:

CAY(A) =B+ B(1-A)=1+4

< (B+1)A=B-1+=A=(B+1)"'(B-1).

Note that B + 1 is always invertible, except when —1 is an
eigenvalue of B. The matrices B for which this last condition
holds are precisely the rotations by w. In fact, the image of
the Cayley map is all of SO(3) with the exception of the set of
rotation matrices by a rotational angle of 7.

The set of all such rotations by = is naturally bijective to the
set of all possible axes of rotation, hence bijective to a projective
plane IRP?. To get charts covering this exceptional set of SO(3),
we require three more charts, just as in the above example of
an atlas for the projective plane. If we define E; as the rotation
matrix by an angle of m around the ith axis, and if we formally
set Eg = 1, then the following four maps (resp. their inverses)
define an atlas of SO(3):2

A Ey- CAY(4), i=0,1,2,3.

The four parametrizations of the atlas thus consist of the Cayley
maps “centered at” 1,E;,Es E3. The transformations from
one chart to another are given by matrix multiplication and are
therefore differentiable.

?] am indebted to Prof. E. Grafarend for a question giving rise to this, which arose
from applications in geodesy. Traditionally one considers in geodesy only a single chart
for the rotation group, yielding the Euler angles or Cardan angles.
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5.2. Definition. (Structures on a manifold)

Given a k-dimensional manifold, one gets additional structure by plac-
ing additional requirements on the transformation functions ;o gpi_l,
which belong to the atlas of the manifold; if all ;0 ! are (left-hand
side), then one speaks of (right-hand side) as follows:

continuous <« topological manifold
differentiable < differentiable manifold
C'-differentiable « C'-manifold
C7-differentiable «— C7-manifold
C-differentiable — (C°°-manifold
real analytic < real analytic manifold
complex analytic < complex manifold
of dimension §
affine < affine manifold
projective <« projective manifold
conformal <« manifold with a

conformal structure
orientation-preserving « orientable manifold

Convention: In what follows we shall understand by the term
“manifold” a C*°-manifold, and “differentiable” will always mean
C*. One can show that a C*-atlas always contains a C* one, so
that this convention is not a real restriction.

5.3. Definition. (Topology)

A subset O C M is called open, if ;(O N M,) is open in IR* for every
i. This defines a topology on M as the set of all open sets. Then all ¢;
are continuous, since the inverse images under them of open sets are
again open. M is said to be compact, if every open covering contains
a finite sub-covering (Heine-Borel covering property). In particular,
every compact manifold can be covered with finitely many charts.
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Running assumption: In what follows we will always assume
that the manifolds which occur satisfy the Hausdorff separation
aziom (Th-axiom), formulated as follows. Every two distinct points
P, q have disjoint open neighborhoods U,,U,. Note that this prop-
erty does not follow from Definition 5.1.

The important point here is that locally (or in the small) the topology
of a manifold is the same as that of an IR*. In particular this means
that the inverse images of open e-balls in IR* are again open in M,
although one cannot necessarily make sense of the notion of e-balls
there, as there is no distance function (metric) defined. But this
suffices to define the notion of convergence of sequences just as in IR
In addition, the topology of every manifold is locally compact, which
means that every point has a compact neighborhood, for example the
inverse image of a closed e-ball in IR*.

5.4. Definition. (Differentiable map)

Let M be an m-dimensional differentiable manifold, and let N be
an n-dimensional differentiable manifold; furthermore, let F: Ml —
N be a given map. F is said to be differentiable, if for all charts
p: U — R™vy :V — R" with F(U) C V the composition
Yo F oy !is also differentiable.

In particular this defines the concept of a differentiable function

f: M — IR, where in this case IR carries the (identity) standard
chart.

This definition is independent of the choice of ¢ and . A diffeo-
morphism F : M — N is defined to be a bijective map which is
differentiable in both directions. One then calls the two manifolds M
and N diffeomorphic. Two diffeomorphic manifolds necessarily have
the same dimension. This is because for IR™ and IR" with n # m,
there is no bijective mapping which is differentiable in both direc-
tions, since the corresponding Jacobi matrix is not square and hence
cannot have non-vanishing determinant (i.e., cannot be invertible).

REMARK: With respect to additional structures on our manifold, one
can similarly define when a map is analytic or complex analytic or
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affine, etc. For example, let us consider here the Riemann sphere C:=
C U {oo}. By means of the inclusion C — C one has a chart, and a
second is given by z — % These two charts define a complex structure
on the Riemann sphere, if one adds all compatible charts. Then all
meromorphic maps of the Riemann sphere to itself are differentiable
maps in the sense of the above definition, for example, also the map
2+ 2~k Furthermore, this defines a conformal structure on S? since
every complex-analytic function f(z) with f’ # 0 in one variable z is
conformal, cf. Section 3D.

Convention: For a chart ¢ we will denote by (u!,...,u¥) the
standard coordinates of IR¥, and by (z!,...,z*) the corresponding
coordinates in M. Thus, z‘(p) is the function given by the ith
coordinate of w(p), z*(p) = u'(¢(p)). The functions (ul,...,u")
as well as (z',...,z%) are thus on the one hand the coordinates
of the points considered, while on the other hand (u!,... u*) and
(z!,...,x*) are also viewed as variables, with respect to which we
can form derivatives. For a real-valued function f : M — IR we
Of | _O(foy™)
Ot p - du! ©(p)
and emphasize this notation by thinking of the partial derivatives
as infinitesimal changes of a function in the directions z¢ or u'.

set

5B The tangent space

Let M be an n-dimensional differentiable manifold and p € M a fixed
point. The tangent space of M at the point p is going to be thought
of as the n-dimensional set of “directional vectors”, which — starting
at p — point in all directions of M, cf. for example [27]. Since there
is no ambient space, this notion has to be intrinsically defined and
constructed. For this, there are three possible definitions, all of which
we describe here.
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5.5. Definition. (Tangent vector, tangent space)

Geometric Definition:

A tangent vector at p is an equivalence class of differentiable curves
c: (—e,6) = M with ¢(0) = p, where ¢ ~ ¢* & (poc)(0) =
(p o ¢*)(0) for every chart ¢ containing p.

Briefly: tangent vectors are tangents to curves lying on the mani-

fold.

Unfortunately there is no privileged representative of such an
equivalence class, and such a representative would depend on the
choice of chart (for example, a line in the parameter domain).

Algebraic Definition:
A tangent vector X at pis a derivation (derivative operator) defined
on the set of germs of functions

Fo(M):={f: M — R| f differentiable} / ~ |
where the equivalence relation ~ is defined by declaring f ~ f* if
and only if f and f* coincide in a neighborhood of p. The value

X(f) is also referred to as the directional derivative of f in the
direction X.

This definition means more precisely the following. X is a map
X: F,(M) — IR with the two following properties:
L. X(af + Bg) = aX(f) + 8X(9), @,8 € R, f,g € Fp(M)
(IR-linearity);
2. X(f-9) = X(f) g)+ f(p)- X(g) for f,g € Fp(M) (product
rule).
(For this to make sense, both f and g have to be defined in a
neighborhood of p.)

Briefly: tangent vectors are derivations acting on scalar functions.
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Physical Definition:

A tangent vector at the point p is defined as an n-tuple of real
numbers (£%);=1__, in a coordinate system x!,... z™ (that is, in a
chart), in such a way that in any other coordinate system 2%, ... "
(i.e., in any other chart) the same vector is given by a corresponding

n-tuple (£%)i=1,.. n, Where

5 o7
¢ = Z Ozl

7

&.

p

Briefly: tangent vectors are elements of IR™ with a particular trans-
formation behavior.

The tangent space T,M of M at p is defined in all cases as the set
of all tangent vectors at the point p. By definition T,M and T,M
are disjoint if p # q.

For the special case of an open subset U C IR™, the tangent space can
be identified with T,/ := {p} x IR™ endowed with the standard basis
(p,e1),...,(p,en). The vector e; corresponds to the curve c;(t) :=
p+t-e; (geometric definition) and to the derivation given by the
partial derivative f —— (—%@ v (algebraic definition). Therefore 5.5 is
compatible with the previous definitions given in 1.7 and 3.1. The
directional derivative coincides in IR™ with the directional derivative
which was already defined in 4.1.

Special (geometric) tangent vectors are those given by the parame-
ter lines (lines along which parameter values are constant), formally
meaning the equivalence classes of them. The corresponding special
tangent vectors in the algebraic definition are the partial derivatives

% v defined by

0 _of

ozt ()= oxt

in a chart ¢ which contains p. As a notational convenience one also

writes 3i| instead of a(zi p The special tangent vectors in the sense of

the physical definition are in this case simply the tuples which consist
of zeros except in the ith place.

_0foe™)

p Out @(p)

P
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The geometric definition is probably the most intuitive (a tangent
vector is a tangent to a curve), but not easy to work with. In this
definition it is not even clear that the tangent space is a real vector
space. The algebraic definition is most convenient for doing compu-
tations, and by its very definition it is independent of any chart. The
physical definition will be further clarified below. The art of doing
computations with the geometric quantities of the physical definition
goes back to G. Ricci and is called the Ricci calculus, cf. [16]. A vec-
tor is simply written as €%, and the very fact that the notion involves
a superscript indicates the transformation behavior, in this case, for
example, as a vector (or 1-contravariant tensor), cf. Section 6.1. This
aspect will be of importance in what follows, but for all definitions
we will give a coordinate-independent formulation as far as this is
feasible. The equivalence of these three definitions is explained for
example in [39], Chapter 2. In what follows we base our analysis on
the algebraic definition and will therefore not require this equivalence.

5.6. Theorem. The (algebraic) tangent space at p on an n-
dimensional differentiable manifold is an n-dimensional IR-vector
space and is spanned in any coordinate system z!, ..., 2" in a given
chart by
0 0

% ’p, ey 51.7 p.
For every tangent vector X at p one has

X = ; X(@')5—

p

Looking at the last equation, we see that the components £ of a
tangent vector X in the Ricci calculus are nothing but the X (z*),
that is, the directional derivatives of the coordinate functions x* in
the direction X. To prove the statement of the theorem we require
the following lemma.

5.7. Lemma. If X is a tangent vector and f is a constant function,
then X (f) =0.
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PROOF: First suppose f = 1 everywhere. Then by the product rule
5.5.2 we have

X(1)=X(1-1)=X1)-1+1-X(1) =2-X(1),

hence X (1) = 0. Now suppose that f has the constant value f = c.
Then by the linearity 5.5.1 we have

X(e)=X(c-1)=c- X(1)=¢-0=0.

O

PROOF OF 5.6: The proof utilizes an adapted representation of the
transition functions in local coordinates. We calculate in a chart
@ : U — V, where without restricting generality we may assume V
is an open e-ball with p(p) = 0, hence z!(p) = -+ = z"(p) = 0. Let
h:V — IR be a differentiable function, and f := h o v. We set
' On
hi(y) == j 8ui(t -y)dt (note: h € C® = h; € C)

and perform the following computation:

From this we get, using the identities f = hoy, f; = hjop, x* = u'op,
the equation

flg) = ) = fila) - '(g)
i=1

for a variable point ¢. Taking derivatives, we get

of
Oxt

= fi(p).

P
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Now if we are given a tangent vector X at p, then it follows from
properties 1 and 2 in 5.5 that

X(f)=X(f(p)+Zfiwi)—0+ZX fi): +Zfz

dw’ ( Z X(a")

for every f. It remains to show that the vectors ai

independent. But this is easy to see, since 5‘—27]11(:5]) -g% =47,

21

are linearly

Note that this proof only works for C°°-manifolds, as otherwise the
degree of differentiability of h; is one less that of h. In fact, the
algebraic tangent space on a C*-manifold is infinite-dimensional. But
there are no difficulties in simply passing to the subspace spanned by

%, e —a—g—n and performing the same calculations there. W

5.8. Definition and Lemma. (Derivative, chain rule)

Let F': M — N be a differentiable map, and let p, ¢ be two fixed
points with F'(p) = ¢q. Then the derivative or the differential of F
at p is defined as the map

DF|, : T,M — T,N

whose value at X € T,M is given by (DF[,(X))(f) := X(fo F)
for every f € Fy(N) (which automatically implies the relation
foF € Fp(M)). For the derivative as defined in this manner, one
has the chain rule in the form

D(G o F)|p = DG|F(p) o} DF|p

for every composition M SN @ of maps, or, more briefly,
D(G o F) = DG o DF.

PROOF: By definition we have
D(G o F)|p(X)(f) = X(fo Go F)

= (DF|,(X))(f 0 G) = (DGlo(DF,(X)) ) (/).
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REMARK: One can view DF|, as a linear approximation of F' at p,
just as in vector analysis on IR™. In coordinates x',...,2™ on M and
y',...,y"on N, DF|, is represented by the Jacobi matrix, for which
we have the more precise relation

91\ —0@oF) @
DF|P (@L) N ; Oz’ ’pa—yl q

In the physical definition of tangent spaces, the chain rule consists
essentially of the product of the Jacobi matrices, applied to the tan-
gent vector. In the geometric definition of the tangent space (i.e., for
equivalence classes of curves through the point p), the differential is
simply described by the transport of curves, as follows:

DFp([c]):=[Foc],
and the chain rule DG(DF([c])) = [G o F o ] is then quite obvious.

Note the action on the tangent of a curve:

é(0) = (F o.¢)'(0) = DF,(é(0)).

EXAMPLES:

(i) In case F : U — R™! (U C IR™) is a surface element in the
sense of Chapter 3 with u — F(u) = p, then the differential of F

acts in the following way on the basis 6—21—|u, ceey a% L of LU
resp. 5‘2—1|p, ey m—‘zﬂlp of T,IR™1:
0 oz 0
EREA RIS SL AN
v\ Jud lu 7 oullu Oxtlp
where the matrix %z—; is the familiar Jacobi matriz of the map-
ping F. Here, ' is the ith component of F(u!,..., u"), also
written as the function z*(u?, ..., u™?).
(ii) If (z*,...,2") and (y',...,y") are two coordinate systems on
a single manifold, then one has similarly, for F' equal to the
identity,

‘

de oy
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(iii) For the components & and n, respectively, of a tangent Vector
X = E.gﬂa—‘zj =37 6y1, one has similarly X = E ¢l 2 a7 =
doii g9 o ayw hence n* = =3; g3 9y 525 - This is precisely the trans-
formation behavior of tangent vectors in Ricci calculus (Defini-
tion 5.5).

The following summation convention is used in Ricci calculus, and
is usually referred to as the Einstein summation convention: sums
are formed over indices which occur in formulas as both an upper
(in the numerator) and a lower (in the denominator) subscript,
without the explicit summation symbol, for example

hik = h]gk instead of hik = thk and
[R=4 j

)

. By
i i _
Nt =& D instead of n’ E 53 8:1:1

5.9. Definition. (Vector field)
A differentiable vector field X on a differentiable manifold is an
association M 5 p — X, € T, M such that in every chart ¢: U —
V with coordinates ', ..., z", the coefficients ¢*: U — IR in the
representation (valid at a point)

p—Z§ dwl

are differentiable functions.

P

Another common notation for this is X = 3, £'-2; 5.7 Or, in Ricci cal-
culus, X = £'. Note that in the physical definition, a vector field is
identified with the n-tuple (¢!,...,£") of functions of the coordinates
A L

As to the notations used in conjunction with vector fields, for a
scalar function f : M — IR, the symbol fX denotes the vector field
(fX)p = f(p) - Xp (one can say that the set of vector fields is a mod-
ule over the ming of functions f on M), while the symbol X f = X(f)
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denotes the function (X f)(p) := Xp(f) (in other words, X f is the
derivative of f in the direction of X).

5C Riemannian metrics

The first fundamental form of a surface element is a scalar product,
which is defined by restricting the Euclidean scalar product to each
tangent space, as we have explained in Chapter 3. In our present
endeavor, we have to find a way to do this without the ambient space,
that is, defining (intrinsically) a scalar product on each tangent space.
Recall the following fact from linear algebra, which we will require in
this regard.

The space L*(T,M; R) = {a: T,M x T,M — IR | « bilinear} has the
basis
{de'], @ dap | 6,5 = 1,...,n},
where the dz* form the dual basis in the dual space
(TpyM)* = L(T,M; R),

defined as follows:

de ‘p(%‘p) =% = { 0 ifij.
The bilinear forms dz’|, ® dz’|, are defined in terms of their action
on the basis (this action being then extended by linearity):

» 0 0 — 1 ifi=kandj=1
do'ly ® do'lp) (5| 5| ) = 017 = , !
(da’], ® d”lp) Oxklp Oxlly kT 0 otherwise.
By inserting the basis, for the coefficients of the representation
o = Zaij d.I‘l@dl"]
1.J
one obtains the expression
o o 0
g = a(@’ 5}7)
In Ricci calculus, the form « is just represented by the symbol a;;;
one also refers to this as a tensor of degree two, cf. 6.1.
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5.10. Definition. (Riemannian metric)
A Riemannian metric g on M is an association p +—— g, €
L*(T,M; R) such that the following conditions are satisfied:
L gp(X,Y) = gp(Y, X) for all X,Y, (symmetry)
2. gp(X,X) > 0forall X #0, (positive definiteness)
3. The coeflicients g;; in every local representation (i.e., in every
chart)
9p = Zgz‘j(p) ~dz’|p ® d2’l,
g
are differentiable functions. (differentiability)

The pair (M, g) is then called a Riemannian manifold. One also
refers to the Riemannian metric as the metric tensor. In local coor-
dinates the metric tensor is given by the matrix (g;;) of functions.
In Ricci calculus this is simply written as g;;.

REMARKS:

1. A Riemannian metric g defines at every point p an inner product g,
on the tangent space T, M, and therefore the notation (X,Y’) instead
of g,(X,Y) is also used. The notions of angles and lengths are deter-
mined by this inner product, just as these notions are determined by
the first fundamental form on surface elements. The length or norm
of a vector X is given by || X ]| := 1/g(X, X), and the angle 3 between
two tangent vectors X and Y can be defined by the validity of the
equation cos 3 - | X|| - ||Y|| = ¢{X,Y), cf. Chapter 1.

2. If the condition that g is positive definite is replaced by the weaker
condition that it is non-degenerate (meaning that g(X,Y) = 0 for
all Y implies X = 0), then one arrives at the notion of a pseudo-
Riemannian metric or semi-Riemannian metric, in which all notions
are defined in exactly the same way as for a Riemannian metric. In
particular, a so-called Lorentzian metric is defined as one for which
the signature of g is (—, +, +, +); such metrics are basic to the general
theory of relativity. In this case the tangent spaces are modeled after
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Minkowski space IR} instead of Euclidean space (cf. Section 3E) with
the metric

-1 0 0 0

_ 0 1 0 O
(Qz‘j) = 0 0 1 0
0 0 0 1

The difference compared with Euclidean space is that there are vec-
tors X # 0 with g(X, X) = 0, so-called null vectors. We have already
studied the three-dimensional Minkowski space in connection with
curves and surfaces (compare sections 2E and 3E). The tensor g;; is
referred to in the theory of relativity as the gravitational potential
or gravitational field, cf. [25], Section 1.3. It gives a metric form to
the manifold (four-dimensional space-time) according to the gravity
coming from the matter which is contained in the space.

Examples:

(i) The first fundamental form g of a hypersurface element in R™*!
is an example of a Riemannian metric.

(i) The standard example is (M,g) = (IR™,go), where the metric
(g0)i; = 0i; (identity matrix) is the Euclidean metric in the
standard chart of IR™ (given by Cartesian coordinates). This
space is also referred to as Fuclidean space and denoted by IE™.
The metric is

1 0 ... 0
01 ... 0

(go)ij: o : )
0 0 ... 1

so that go(.,.) = (-,-) is, not unexpectedly, nothing but the
Euclidean inner product.
(iii) A different Riemannian metric on IR" is given for example by
g,]-(xl, Cey (L‘n) = 51']'(1 + (L‘i.’E]‘)Z
1+ 72 0 o 0
0 1423 ... 0
(9i5) = S

0 0 1+22
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(vii)

Similarly, one can define numerous Riemannian metrics simply
by choosing the coeflicients g;; arbitrarily, provided only that
one has positive definiteness or non-degeneracy of the metric.

After choosing constants 0 < b < @, on (0,27) x (0,27) C
IR?, 0 < r < 1, one can define a Riemannian metric by

(gu;(u,v)) = ( b02 (a+bocosu)2 )

This coincides with the first fundamental form on an open subset
of the torus of revolution (cf. Chapter 3).

We can give the abstract torus JR?/Z? a uniquely defined Rie-
mannian metric ¢ with the property that the projection

(RQvQO) - (RQ/ZQ,Q)

is a local isometry in the sense of 5.11. This is called the flat
torus. In the chart (0,1) x (0, 1) the metric is (g;;) = ((1) (1)), as

in the Euclidean plane.

Similarly, the real projective plane IRP? = S%/4 can be given a
unique Riemannian metric g such that the projection (S?, g;) —
(IRP?,g) is a local isometry in the sense of 5.11, where gy is the
standard metric on the unit sphere.

The Poincaré upper half-plane {(x,y) € IR? | y > 0} with the

metric
1 1 0
e == (o 1)

is a Riemannian manifold. In this metric, length is given by

|]5%|| = i; thus the half-lines in the y-direction have infinite

length: f; 1dt = —log(n) — oc for n — 0 and [ +dt =
log(n) — oo for n — co. In fact, every geodesic is of infinite
length in both directions. We refer also to the Exercises at the
end of Chapter 4 as well as Section 7TA for more details.
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5.11. Definition. (Maps which are compatible with the metric)
A diﬁ"erentiableA/ map F: M — M between two Riemannian man-
ifolds (M, g), (M,q) is called a (local) isometry, if for all points p
and tangent vectors X,Y we have

9F) (DF|p(X), DF[p(Y)) = gp(X, Y);

more generally, F' is called a conformal mapping, if there is a func-
tion A: M — IR without zeros, such that for all p, X,Y, one has

Gr(p) (DF,(X), DE,(Y)) = X (p)gs(X,Y).
See also Definitions 3.29 and 4.29.

By definition a local isometry preserves the length of a vector, angles,
and areas and volumes, whereas a conformal mapping preserves angles
but rescales the length of any vector by the factor A.

EXAMPLES: The map (z,y) + (cosz,sinz,y) is a local isometry of
the plane onto a cylinder. Stereographic projection defines a confor-
mal map between the plane and the punctured sphere.

QUESTION: Does there exist a Riemannian metric on an arbitrary
manifold M7 Locally there is no problem in constructing one, as we
choose any (g;;) which is both positive definite and symmetric. To
make this construction global, one can use the method of a partition
of unity. To introduce this notion, we define the following

NoTaTiON: For a given function f: M — IR, the topological closure

supp(f) == {x € M | f(z) # 0}
is called the support of f.

5.12. Definition and Lemma. (Partition of unity)
A differentiable partition of unity on a differentiable manifold M is
a family (f;);es of differentiable functions f;: M — IR such that the
following conditions are satisfied:

1.0 fy<lforalliel,

2. every point p € M has a neighborhood which intersects only
finitely many of the supp(f,), and
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3. Y ier Ji =1 (locally this is always to be a finite sum).

If there is a partition of unity on M such that the support supp(f;) of
each function is contained in a coordinate neighborhood, then there
exists a Riemannian metric on M.

Proor: For each ¢ € I choose g,(c? as a symmetric, positive definite

matrix-valued function (in the chart associated with supp(f;)). This
locally defines a Riemannian metric g9, and f; - ¢/ is differentiable
and well-defined on all of M, namely, it vanishes identically outside

of supp(f;). Then we set
g:=> fi-g".

i€l
It follows that g is symmetric and positive semi-definite because f; > 0
and ¢ > 0, and from >, fi =1 we see that g is even positive definite
at every point. U

WARNING: The same method does not show the existence of an in-
definite metric g on M, because in this case § can degenerate, even if
all §® are non-degenerate. In fact, there are topological obstructions
to the existence of indefinite metrics. For example there is a Lorentz
metric of type (— + + -+ +) on a compact manifold if and only if the
Euler characteristic satisfies x = 0. This is because precisely in this
case, a line element field exists®. Among the compact surfaces, only
the torus and the Klein bottle satisfy this condition.

We mention the following result without proof.

Theorem: If the topology of M (i.e., the system of open sets, cf. 5.3)
is locally compact (which always holds for manifolds) and the second
countability axiom is satisfied (there exists a countable basis for the
topology), then there exists in every open covering an associated par-
tition of unity, in the sense that supp(f;) is always contained in one
of the given open sets.

For a proof, see for example [40]. In fact it is sufficient to make the
(weaker) assumption that the space is paracompact.

L. Markus, Line element fields and Lorentz structures on differentiable manifolds,
Annals of Mathematics (2) 62, 411-417 (1955).
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Under the same assumptions there exists a Riemannian metric. In
particular, the compactness of M implies the topological assumptions
required. Thus, on an arbitrary compact manifold there exists a Rie-
mannian metric.

5D The Riemannian connection

Just as at the beginning of Chapter 4, we have here the problem
of defining the derivative on an abstract differentiable manifold or
abstract Riemannian manifold not only for scalar functions (this is
sufficiently done in the algebraic Definition 5.5), but also for vector
fields. What we have to define is the notion of the derivative of a
(tangent) vector field with respect to a tangent vector, with a result
which is again a tangent vector. This will be defined in 5.13 in such a
way that a Riemannian metric is not necessary and both arguments
X and Y are treated equally. The so-called Riemannian connec-
tion, defined in 5.15, is nearer to the notion of covariant derivative of
Chapter 4; in fact, it is just a generalization. Here we also require a
compatibility with the Riemannian metric. The fundamental lemma
of Riemannian geometry, presented in 5.16, shows the existence of a
unique Riemannian connection for an arbitrary Riemannian metric.

5.13. Definition. (The Lie bracket?)
Let X,Y be (differentiable) vector fields on M, and let f: M — IR
be a differentiable function. Through the relation

(X, Y](f) == X(Y(£) - Y(X(f))
we define a vector field [X, Y], which is referred to as the Lie bracket

of X,Y (also called the Lie derivative LxY of Y in the direction
X). At a point p € M we have [X,Y],(f) = Xp(Y ) - Y, (X f).

The Lie bracket measures the degree of non-commutativity of the
derivatives. In Section 4.5 above we made a similar definition, namely
[X,Y]:= DxY — Dy X, which in IR™ is equivalent to the above def-
inition. For the definition of the Lie bracket, no Riemannian metric
is required; the differentiable structure is sufficient. The exercises

4Named after Sophus Lie, the founder of the theory of transformation groups.
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at the end of the chapter help give a geometric interpretation and
intuition of the Lie bracket. For scalar functions ¢ one simply sets
Lx¢ = X(p) and declares in this way a Lie derivative for scalar func-
tions and for vectors. There is also a Lie derivative in the direction of
a vector field defined for one-forms given by the formula £Lxw(Y) :=
X(w(¥)) —w(LxY). On can similarly define a Lie derivative for ten-
sor fields in general, see [42, 2.24]. If the Lie derivative vanishes in
the direction of a vector field, this leads naturally to a corresponding
notion of “constancy”. An example is an isometric vector field X
(also called a Killing field) on (M, g) characterized by the equation
Lxg = 0. Here we have Lxg(Y,Z) = g(VvX,Z) + g(Y,VzX).

5.14. Lemma. (Properties of the Lie bracket)
Let XY, Z be vector fields, let «, 8 be real constants, and let f,h
M — IR be differentiable functions. Then the Lie bracket has the
following properties:
(i) [aX + BY, 2] = o|X, Z] + B8]Y, Z];
(i) [X,Y] = —[Y, X];
(iif) [fX,RY]=f-h- [ X, Y]+ [ - (Xh)- Y -h-(Yf)- X
X, Y, Z)] + [Y,[1Z,X]] + [Z,[X,Y]] =0; (Jacobi identity)

lV

[
(v) [d d:vf} 0 for every chart with coordinates (z!,..., z");

i 0 SO L 8Eiy D
[ZS Zn e ]} :Z<f 827 =N 8:1:1)@ (represen-

tatzon in local coordinates).

PRrROOF: The properties (i) and (ii) are obvious. (iii) follows from the
product rule 5.5:

X, hY)(9) = FX((RY)6) = hY (fX)9)
= J(XR)(Y9) + FRX(Y¢) = h(Y f)(X ) — hfY (X¢)
= (FRIX, Y] + f(XR)Y = h(Y /)X ) (0)

for every function ¢ in a neighborhood of the point under considera-
tion.
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(v) is nothing but the well-known Schwarz’ law
o s 0 o0 f o /0
527 (7)) = G = 97 (57 1)

for the commutativity of the second derivatives.

The representation in (vi) has already occurred in Section 4.5, and is
proved here in an entirely similar manner.

The Jacobi identity (iv) is easily checked as follows, where we sym-
bolically write [X,Y] = XY — Y X:

(X, [Y. Z]] + [v,[Z,X]] + [Z,[X,Y]]
=XYZ-XZY ~YZX +ZYX +YZX ~YXZ

—ZXY +XZY +ZXY - ZYX - XYZ+YXZ=0.

5.15. Definition. (Riemannian connection)
A Riemannian connection V (pronounced “nabla”) on a Riemann-
ian manifold (M, g) is a map

(X,)Y)— VxY,

which associates to two given differentiable vector fields X,Y a
third differentiable vector field VxY', such that the following con-
ditions are satisfied: (f: M — IR denotes a differentiable function):

(i) Vx,+x,Y =Vx,Y +Vx,Y; (additivity in the subscript)

(ii) VixY = f- VxY; (linearity in the subscript)
(iii) Vx(Y1 +Y2) = VxY| + Vx Yo, {additivity in the
argument)

(iv) Vx(fY)=f - VxY + (X(f)) - Y; (product rule in the
argument)

(v) X(9(Y,2)) = g(VxY,Z)+g(Y,VxZ), (compatibility
with the metric)

(vi) VxY - Vv X — [X,Y] =0. (symmetry or

torsion-freeness)
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REMARK: For simplicity one often uses the notation Vx f = X (f) for
the directional derivative of f in the direction X. Dropping the con-
ditions (v) and (vi) defines a plain “connection”, and if the condition
(vi) is not satisfied, the difference T(X,Y) := VxY — Vy X — [X,Y]
is called the torsion tensor of V. Instead of “connection” one also
speaks of a covariant derivative (cf. 4.3), and instead of “Riemannian
connection”, the term Levi—Civita connection.

The meaning of the term lies in a kind of “connection” between the
different tangent spaces, which are disjoint by definition. This will
occur again in sections 5.17 and 5.18, where the notion of parallel
displacement {(or parallel transport) of vectors in introduced. In this
way it is possible to relate tangent vectors which are based at different
points of the manifold. The properties for calculations with the Rie-
mannian connection are identical to those of the covariant derivative
in Section 4.4.

EXAMPLES:

1. In Euclidean space (IR",g,) with the standard metric go, we
can set V = D, which means that the directional derivative is a
Riemannian connection, cf. the properties mentioned in Chapter
4,

2. On a hypersurface M™ — IR™"! the covariant derivative in the
sense of Definition 4.3 defines a Riemannian connection for the
first fundamental form in the above sense.

3. In R3set VyY := DxY + %(X xY), where X XY is the usual
cross product of vectors. This V satisfies (i) - (v), but not (vi):

VxY —VyX =DxY =DyX + X XY =[X,Y]+X xY
N—

torsion

5.16. Theorem. On every Riemannian manifold (M, g) there is
a uniquely determined Riemannian connection V.

PROOF: First we prove the uniqueness. From properties (i) - (vi) we
get, for vector fields X, Y, Z, a relation as the sum of three equalities:
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X(Y,Z) = (VxV,Z)+(Y,VxZ)
Y(X,Z) = (VyX,Z)+(X,VyZ) +
—Z(X)Y) = —(VzX)Y)—(X,VzY)

XY, Z2)+Y (X, Z)~-Z(X,Y) = (Y,VxZ - V7 X)+(X,VyZ = VzY)
[X.,Z] v,Z]
+{Z,VxY +VyX)
N e’

2V x Y +[Y,X]

From this we get the Koszul formula
(x)  2VxY,Z)=X{Y,Z)+Y(X,Z) - Z{(X,Y)
- <Y> [X, Z]) - <X, [Yv Z]> - <Zv [Ya X]>

The right-hand side is uniquely determined, given Z; hence also V xY
is uniquely determined.

To show the ezistence of V we define V by the requirement that (x)
holds for all XY, Z.

It remains to show that (Vx Y)lp is defined (without using Z as a
vector field), in other words, the expression <VXY]p,Zp> depends
only on Z,, or equivalently,

for every scalar function f. This is easily verified by applying the
properties of the Lie bracket and the product rule

X(fh) = f-(Xh)+(Xf)-h.

The validity of (i) - (vi) for the V defined in this manner has to be
established.

(i) and (iii) are obvious.

(ii} By applying the formula (x) we get
2AVixY, Z) - 2(fVxY,Z)
=YX, Z) - (ZFX,Y) = (Y. =(Z2f)X) - (Z,(Y /) X) = 0.
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The proof of (iv) is similar.

(v) We have 2(VxY, Z) + 2(Y. Vx Z)

= X<Yv Z>+Y<X7 Z>_Z<Xa Y> —<Y, [X! Z}>*<Xv [Y* Z]>~<Za [Y, X]>
FX(Z YY)+ Z(X,Y)~Y (X, Z)—(Z,[X,Y]) = (X, [Z,Y]) = (Y, [Z, X])
= X(Y,Z) + X(2,Y) = 2X (Y, Z)

)Wehave AVxY - Vy X, Z)
Y(X
2

e

Z) - <YZ>+Z<YX> <X Y, Z]) + (¥, [X, Z]) +(Z,[X,Y])
[ Y], Z). O

In local coordinates we get with the same formula the expression which
we already met in Section 4.6 for the Christoffel symbols

1 0 0 0 m k.
Lok = 5( - agz’j —+ 8_jgzk —+ 8_igjk)» Iy = ¥Fi1‘,k9

where (g*™) := (grs) 7", and
0 0 P o
< ﬁ@7@>—ljij,k,vilé; kF”‘jw'

From this we get the following expression for V XY, in local coordi-
nates, provided X = 5. & le and Y =}, 7 aEJ:

VXY =Vy a2, (Zn&zﬂ)

- ; (Zgl - Zr )
i
Especially for X = a%l we obtain

e - (Sril) - S Trie)
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Consequently, in Ricci calculus the notation for this formula is
On*
k
Vin® = Py + I k 7.

In this expression, the left-hand side is not to be interpreted as the
derivative of a scalar function n*, but as the kth component of the
derivative of the vector (n*,...,n") with respect to the ith variable.

If we consider, instead of vector fields on the manifold itself, vector
fields along a curve ¢, then the coordinate functions n* are not to be

viewed as functions of 2!, ..., 2™, but rather as functions of the curve
parameter t. In this case, the following equation may be taken as a
definition, where c!(t), ..., c"(¢) are the coordinates of ¢:

v = 3 (T + Sewroreogy)

ﬂ 2 877k(t) i 9

=2 (EemT Cewron 5(0(6))) e
The Riemannian metric thus determines the Riemannian connection,
and this in turn determines the notion of parallelness in the same way
that the covariant derivative in the ambient Euclidean space did in
Section 4.9.

17. Definition. (Parallel, geodesic, cf. also 4.9)

1. A vector field Y is said to be parallel, if VxY = 0 for every
X.

2. A vector field Y along a (regular) curve c is said to be parallel
along the curve ¢, if V.Y = 0 (this is independent of the
parametrization).

3. A regular curve c is called a geodesic, if V:é = Aé for some
scalar function A. This is equivalent to the equation V. ¢ =
0, provided ¢ is parametrized by arc length.
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The same remarks made in 4.9 for non-regular curves hold here also.

5.18. Corollary. (Parallel displacement, geodesics)

(i) Along an arbitrary regular curve c¢ there is for each Y €
T,1)M a vector field Y (along c) which is parallel along ¢
and whose value at ¢(t) is Yp. This vector field Y is called
the parallel displacement of Yy along c.

(ii) Parallel displacement preserves the Riemannian metric, i.e.,
(Y1,Ys) is constant for any two parallel vector fields Y1, Y5
along c.

(i) At every point p and for each X € T,M with g(X,X) =1,
there is an € > 0 and a uniquely determined geodesic ¢ :
(—€,e) — M which is parametrized by arc length and for
which ¢(0) = p, é(0) = X.

The proof is literally the same as in 4.10, 4.11 and 4.12. It is sufficient
to consider the parts of the curve which are contained in local charts.
The equation which Y(t) =3 ;7 I(t)52; satisfies if and only if it is
parallel along ¢: V.Y =0 (Where z'(t) are the coordinates of ¢) is

+Z ) TE(e() =0, k=1,...,n.

The system of equations which ¢ satisfies precisely if it is a geodesic
is

o +Zw B TE () =0, k=1,...,n.
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5.19. Definition. (Exponential mapping)

For a fixed point p € M let c&f) denote the uniquely determined
geodesic through p which is parametrized by arc length in the
direction of a unit vector V. In some neighborhood U of 0 € T, M,

the following mapping is well-defined:
T,M2JU> (p,tV) — cg)(t).

Here the parameters are chosen is such a way that (p,0) — p.
This map is called the exponential mapping at the point p, and it
is denoted by exp,,: U — M. For variable points p one can define
a mapping exp in a similar manner by the formula exp(g,tV) =
exp,(tV) = cgf’)(t). This can be defined on an open set of the
tangent bundle TM, compare exercise 3.

Figure 5.2. Exponential mapping at a point p

REMARK: exp,, maps the lines through the origin of T, M to geodesics,
and this mapping is isometric because the arc length is preserved, see
Figure 5.2. In all directions perpendicular to the geodesics through
p the map exp, is in general not isometric, i.e., it is not length-
preserving. This question will be addressed again later in Section 7B,
where a more precise study of the transformation of lengths is made.

EXAMPLES:

1. In IR™ the exponential mapping is nothing but the canonical
identification of the tangent space T,,JR™ with IR™ itself, where
the origin of the tangent space is mapped to the point p. More
precisely, exp,(tV) = p + tV.
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2.

For the unit sphere S? with south pole p = (0,0, —1), the ex-
pouential mapping can be expressed in the following manner
using polar coordinates, where we write a tangent vector as
T COS ‘Z"a% + rsin gz')a%, thus viewing it as a function of r and ¢:
T T, . T

exp, (7, ¢) = (cosq’)cos (r- —2~),sin¢>cos (r~ 5),sm (r— 5))
The circle 7 = 7 in the tangent plane gets mapped to the equa-
tor, while the circle r = 7 maps to the north pole. At this point
the exponential mapping degenerates.

In the group SO(n, R) with the unit element F and with the
(bi-invariant) standard metric, expg is given by the exponential

Ak
Ab——éz—];’—

k>0

series

evaluated for an arbitrary skew-symmetric real (n x n)-matrix A
(cf. the proof of 2.15). This is the origin of the name exponential
mapping. The exponential rule

exp ((t + s)A) = exp(tA) - exp(sA)

expresses the fact that the line {tA | ¢t € IR} is mapped by expp
onto a l-parameter subgroup of matrices. A very similar state of
affairs holds for other matrix groups such as GL{n, R), SL(n, IR),
U(n),SU(n). This mapping is of fundamental importance in
the theory of Lie groups. The tangent space at the unit element
is the corresponding Lie algebra. In the case of the rotation
group SO(n, IR), the Lie algebra is the set of skew-symmetric
(n x n)-matrices, together with the multiplication given by the
commutator [X,Y] = XY — YX. (Compare with 5.13.) For
more details see [43], Chapter 1.

5.20. Definition. (Holonomy group)

Let P°: T,M — T, M denote the parallel translation along a closed
curve ¢ with ¢(0) = ¢(1) = p. For this it suffices that ¢ is continuous
and piecewise regular, since the parallel translation is the composition
of the corresponding smooth parts and one may then apply 5.18 (i).
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For ¢; and ¢y let ¢o * ¢; denote the composition of the curves, and
let c71(t) := ¢(L —t) for c: [0, L] — M (run through in the opposite
direction). Then one has
pearer — pez oPCl,
P = (P

and the set of all parallel translations from p to p along piecewise
regular curves thus has the structure of a group. It is called the
holonomy group of the manifold (M, g) at the point p. If M is path
connected, then all holonomy groups are isomorphic to each other and
one just speaks of the holonomy group of (A4, g). The holonomy group

is always a subgroup of the orthogonal group O(n), which operates
on T,M = IR™. This follows from 5.18 (ii).

EXAMPLES:

1. The holonomy group is trivial for [R™ and for the flat torus
IR™/Z™. The reason for this is that the parallel translation in the
sense of the Riemannian metric coincides with the usual paral-
lel translation. For every closed path the result under parallel
translation is the vector one starts with.

2. On the standard sphere S§? the holonomy group contains all
rotations (exercise).

3. On a flat cone with a non-trivial opening angle (this is a ruled
surface with K = 0, cf. 3.24), the holonomy group is not trivial.
This is seen by cutting the cone open and developing it on the
plane (cf. 3.24). The identification at the boundary leads to
non-trivial elements of the holonomy group.

4. On a flat Mébius strip the holonomy group also contains a re-
flection. This can again be seen most easily by developing the
surface in the plane.

Exercises

1. Show that the open hemispheres {(z, 22, z3) € S? | x; # 0} for
1 =1, 2,3 define an atlas of the two-dimensional sphere with six
(connected) charts Uy, ..., Us. Here 1,22, 3 denote Cartesian
coordinates. Determine explicitly the transformation functions
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between the charts. A picture of the six hemispheres can be
found on the cover of the book [14].

Show that the Cartesian product AM; x Ms of two differentiable
manifolds is again a differentiable manifold.

Show that for a given differentiable manifold M the set of all
pairs (p, X) with X € T,M is again (in a natural way) a dif-
ferentiable manifold; it is called the tangent bundle T M of M.
For this, construct for every chart ¢ in M an associated bundle
chart by means of

(I)(va) = (*P(p)afl(p), o 7§n(p)) € R" x Bna

where €', ..., €™ are the components of X in the corresponding
basis, i.e., X, = > i, {i(p)g% . Check the properties of Defi-
nition 5.1. (Note: Formally the definition of the tangent bundle
includes the projection from TM to M given by (p, X) — p.)

Determine whether this definition of the tangent bundle coin-
cides in the case of M = IR™ with Definition 1.6.

Show the following. The tangent bundle of the unit circle S*
is diffeomorphic to the cylinder S! x IR. The analogous state-
ment does not hold for the two-sphere S?, but surprisingly it
does hold for the three-sphere S3: the tangent bundle of $3 is
diffeomorphic to the product S® x IR3, cf. the exercises at the
end of Chapter 7.

The metrics on two Riemannian manifolds (M, g1) and (M>, g2)
induce in a canonical manner a Riemannian metric g1 X g2 on
the Cartesian product M; x My, the so-called product metric.
What is the form of this metric in local coordinates?

Let a submanifold M of IR* be given by the equation
M = {(x1,29,73,74) € R* | 23 + 22 = 23 + 23 = 1}.
Prove that M is a two-dimensional manifold by displaying an

explicit atlas.

Construct an explicit Lorentzian metric, i.e., a metric tensor
of type (—+), on the (abstract) Klein bottle (cf. the examples
following 5.1 in the text).
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10.

11.

12.

13.

Let (M, g) be a two-dimensional Riemannian manifold, and let
A C M be a geodesic triangle which is the boundary of a simply
connected domain. Show that the parallel translation along this
boundary (traced through once) is a rotation in the tangent
plane. Calculate the angle of rotation in terms of quantities
which only depend on the interior of A. Hint: Gauss-Bonnet
formula.

Show that the holonomy group of the standard two-sphere S2
really contains all the rotations. Hint: Consider curves which
are constructed piecewise from great circles.

Determine the holonomy group of the hyperbolic plane as a sur-
face in three-dimensional Minkowski space (cf. 3.44). Here the
covariant derivative is to be taken as in Euclidean space, that
is, with tangent components which are directional derivatives.

Let (M., g«) be an n-dimensional Riemannian manifold and let
f: IR — IR be a function without zeros. Then IR x M endowed
with the metric

glt,at, . a™) = di? + (f(1)? - gula,. . 2™)

is again a Riemannian manifold, the so-called warped product
with the warping function f. Show that the ¢-lines are always
geodesics. What are sufficient conditions in order that geodesics
on M, are also geodesics on M7

Let X be a vector field on the manifold M. Show the following.

(a) At every point p € M there is a uniquely determined curve
¢ept Ip — M with ¢,(0) = p,c,(t) = X, where I, is the
maximal interval around t = 0 with this property.

(b) For every open neighborhood U of p there is a set, open in
IR x M, such that the map ¢ which is defined by ¥(¢,q) :=
1i(q) := ¢q4(2) is differentiable. v is called the local flow of
X at the point p.

{c) In case 1 is defined for every t € IR, one calls the vec-
tor field (or also the flow) complete. In this case one has
Yiys = 1Yy 0 g for all t,s € IR. This property defines a
one-parameter group of diffeomorphisms, since ¢ +— v is a
group homomorphism. Why are all 1)y diffeomorphisms?
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14.

15.

16.

17.

18.

19.

20.

Let X be a vector field on an n-dimensional manifold M with
X, # 0 at a point p € M. Using the previous exercise, show that

there is a coordinate system z!,...,2" near p with X = -2;
y ) ; p )

.
Let X,Y be vector fields on M, and let 1 denote the local flow
of X at a point p € M. Again using the previous exercise, verify

the following equation:
X, Y] = lim = (w Vpip) = Yo )

Show that the tangent space of the rotation group SO(3) at the
“point” corresponding to the identity matrix can be identified
in a natural manner with the set of all skew-symmetric (3 x 3)-
matrices (cf. also the proof of 2.15). Calculate the differential of
the Cayley map CAY : IR® — SO(3). For the definition of this
map see the examples following 5.1.

Give an explicit atlas for the manifold IRP?® (real projective
space), which is defined as the quotient of the three-sphere by
the antipodal mapping.

Show that the exponential series
Ak
A— > o
k>0
is actually an orthogonal matrix for an arbitrary skew-symmetric
matrix A.
Find a formula for the inverse mapping of the exponential map-

ping (a kind of logarithm) for the case of the group SO(n). Hint:
Take a power series and determine the coefficients.

The Schwarzschild half-plane is defined as the half-plane £ =
{(t,r) € R? | 7 > ro} with the semi-Riemannian metric ds? =
—hdt? +h~1dr?, where h denotes the function h(r,t) := 1 —rq/r.
Show that the maps (t.7) — (&t + b,7) are isometries. More-
over, calculate the Christoffel symbols and show that the r-lines
are always geodesics. Show also that for the geodesics, written
v(s) = (¢(s),r(s)), the quantity h(-y(s))t'(s) is a constant. The
constant rg corresponds to the Schwarzschild radius, which de-
pends on the mass of a black hole, which one should imagine is
situated at r = 0.
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21.

22.

Suppose we are given coordinates in (M, g) such that in these
coordinates the metric tensor has diagonal form, ie., g;; = 0
for ¢ # j. Show that the system of equations for geodesics is as
follows:

d dx* 1 - Ogsi [ da’ 2
fadl = )= — k=1,... .
ds (gkk ds ) 2 & dxk (ds ) ( )

Let the Schwarzschild metric be given as follows:

ds® = —h-dt> + h™" - dr? + r? (sin® 9dy® + d9?),
where h = h(r) =1 — 22 The Schwarzschild metric is a model
for a universe in which there is precisely one rotationally sym-

metric star. Show that every geodesic ¢ satisfies the following

equations with constants F and L:
(a) h- & = F,

2 ¢in2 de _
(b) résin®d- 3£ = L,

2
(c) d (7"2 . ﬁ) = r2gin ¥ cos ¢ (%f)

ds ds
Now suppose that ¢ is parametrized by arc length 7, which de-
scribes a freely falling particle (in particular, this implies it is
not a light particle, for which g(c, ¢/) # 0 holds), with the initial
condition that it is falling equatorially, i.e., satisfies ¥(0) = §
and 22(0) = 0. Then we have
(al) h - j_qt- = E,
(b)) r2de = 1,
(Yd=7%.
Hint: Exercise 21.






Chapter 6

The Curvature Tensor

In the Gauss equation 4.15 or 4.18, we have on the left-hand side an
expression which we called the curvature tensor. Its connection to the
curvature (and thus the nomenclature) is clarified by the Theorema
Egregium 4.16 and 4.20. For this it is of great importance that the
left-hand side of the equation only depends on the first fundamental
form or the covariant derivative, which follows from the equation

R(X,Y)Z =VxVyZ—-VyVxZ—-VixyZ

in the Koszul-style calculus, or

s 81—‘:?]' _ 8ka

*IT uk dud
in Ricei calculus. (The more precise notation here would be R%,;
instead of R}, ;.) This expression is well-defined for an arbitrary Rie-
mannian manifold and is the foundation for all further information
on curvature of Riemannian manifolds. In fact, all scalar curvature
quantities can be obtained from this curvature tensor. Before we go
into this, we make a brief digression with some general remarks on

T 8 T ]
+ 15T — D'y,

tensors.

6A Tensors

Tensors are operators which are not determined by the process of
taking derivatives of other quantities (a local process), but rather
through evaluation of known quantities at single points. An example
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