Role of parthenolide in paclitaxel-induced oxidative stress injury and impaired reproductive function in rat testicular tissue


Toraman E., Budak B., Bayram C., Sezen S., Mokhtare B., Hacimueftueoglu A.

CHEMICO-BIOLOGICAL INTERACTIONS, vol.387, pp.110793-0, 2024 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 387
  • Publication Date: 2024
  • Doi Number: 10.1016/j.cbi.2023.110793
  • Journal Name: CHEMICO-BIOLOGICAL INTERACTIONS
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, CAB Abstracts, Chemical Abstracts Core, EMBASE, Veterinary Science Database
  • Page Numbers: pp.110793-0
  • Ataturk University Affiliated: Yes

Abstract

The chemotherapeutic agent paclitaxel (PTX) causes testicular toxicity due to oxidative stress. Parthenolide (PTL), the active ingredient of the Tanacetum parthenium plant, is used to treat inflammation, dizziness, and spasms. In the present study, we evaluated the therapeutic effect of PTL on PTX-induced testicular toxicity in rats and its role in reproductive function. To this end, 6 groups were formed: control, PTX, sham, T1, T2, and T3. After testicular toxicity was induced in rats with 8 mg/kg PTX, the rats were treated with 1 mg/kg, 2 mg/kg, and 4 mg/kg PTL for 14 days. GSH and MDA levels were measured in rat testicular tissue after the last dose of PTL was administered. To determine the damage caused by PTX to testicular tissue by detecting 8-OHdG and iNOS, sections were prepared and examined histopathologically and immunohistochemically. Furthermore, the gene expressions and enzymatic activities of SOD, CAT, GPx, GST, and GR were investigated in all groups. After PTL treatment, MDA, 8-OHdG, and iNOS levels decreased while GSH levels increased in testicular tissue. Increased levels of antioxidant genes and enzymes also reduced oxidative stress. Additionally, the expression levels of the Dazl, Ddx4, and Amh genes, which are involved in gametogenesis and sperm production, decreased in case of toxicity and increased with PTL treatment. The data from this study show that PTL may have a therapeutic effect in the treatment of testicular damage by eliminating the oxidative stress-induced damage caused by PTX in testicular tissue, providing an effective approach to alleviating testicular toxicity, and playing an important role in reproduction/sperm production, especially at a dose of 4 mg/kg.