Analyst, cilt.149, sa.6, ss.1872-1884, 2024 (SCI-Expanded)
Neuroblastoma and glioblastoma are the most commonly seen nervous system tumors, and their treatment is challenging. Relatively safe and easy acquisition of nutraceutical natural products make them suitable candidates for anticancer research. Royal jelly (RJ), a superfood, has many biological and pharmacological activities. This study was conducted to, for the first time, elucidate its anticancer efficiency, even in high doses, on neuroblastoma and glioblastoma cell lines through cell viability, apoptosis, cell cycle and biomolecular content evaluation. We performed experiments with RJ concentrations in the range of 1.25-10 mg mL-1 for 48 h. Cell viability assays revealed a notable cytotoxic effect of RJ in a concentration-dependent manner. Treatment with a high dose of RJ significantly increased the apoptotic cell population of both cell lines. Furthermore, we observed G0-G1 phase arrest in neuroblastoma cells but G2-M arrest in glioblastoma cells. All these cellular changes are closely associated with the alterations of the macromolecular makeup of the cells, such as decreased saturated lipid, protein, DNA and RNA amounts, protein conformational changes, decreased protein phosphorylation and increased protein carbonylation. These cellular changes are associated with RJ triggered-ROS formation. The clear segregation between the control and the RJ-treated groups proved these changes, obtained from the unsupervised and supervised chemometric analysis. RJ has good anticancer activity against nervous system cancers and could be safely used with current treatment strategies.