Putrescine in Herbicide Stress Protection: Modulate the Genomic Instability and DNA Methylation Changes in Wheat


Arslan E.

Avrupa Bilim ve Teknoloji Dergisi, cilt.19, ss.442-448, 2020 (Hakemli Dergi)

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 19
  • Basım Tarihi: 2020
  • Doi Numarası: 10.31590/ejosat.720065
  • Dergi Adı: Avrupa Bilim ve Teknoloji Dergisi
  • Derginin Tarandığı İndeksler: TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.442-448
  • Atatürk Üniversitesi Adresli: Evet

Özet

Wheat is one of the most consumed and important food in worldwide. During its growing season, weeds around the cultivated areas grow rapidly and inhibit the normal growth and development, stable yield and quality of wheat seriously. The prevention and removal of weeds are achieved by herbicide treatments. Dicamba is one of the herbicides that is used in agricultural areas which may represent a potential genotoxic risk to off-target crops. The present study was aimed to evaluate the effect of dicamba (0.2, 0.4 and 0.6 ppm) which caused to destabilize of genomic template stability (GTS) and DNA methylation changes in Triticum aestivum L. seedlings by RAPD (Randomly Amplified Polymorphic DNA) and CRED-RA (Coupled Restriction Enzyme Digestion-Random Amplification) techniques, respectively. Also, Full Methylation Ratio and Methylation Ratio were computed according to data of CRED-RA patterns. It was determined that the damage raised with an increasing dose of dicamba. To minimalize the genotoxic effects of dicamba, putrescine (0.01, 0.1 and 1 ppm), a kind of polyamine, were used. Especially, 1 ppm of putrescine was the best concentration to revert the stressexposed wheat seedlings. Polyamines are positively charged organic cations and hence they interact with negatively charged macromolecules such as DNA and RNA and stabilize them. The results of this experiment have clearly shown that putrescine could be used effectively to protect wheat seedlings from the effects of dicamba on DNA damage and DNA methylation changes, also RAPD and CRED-RA could be used as ideal techniques to get reliable and accurate results.