Molecular Biology Reports, vol.50, no.11, pp.9143-9151, 2023 (SCI-Expanded)
Background: Quantum dots are usually particles smaller than 100 nm and have a low toxic effect. This study aimed to bioconjugate the anticancer effective melatonin agonist to quantum dots and demonstrate its effects in two cancer lines. This is the first study that aims to examine the anticancer activity of ramelteon bioconjugation to quantum dots, providing a new perspective on the use of Melatonin and its derivatives in cancer. Methods and Results: For this purpose, first of all, cobalt sulfide (CoS) quantum dots were synthesized, bioconjugated and characterized with Punica granatum extract by green synthesis method. The effects of synthesized nanomaterials on neuroblastoma and prostate cancer cells were investigated. It was noted that nanomaterials reduced cell viability by 50% in neuroblastoma and prostate cancer lines at a dose of 50 µg/mL. Ramelteon bioconjugated nanomaterials reduced cancer cell viability by 1.4 times more than free melatonin. CoS quantum dots were determined to double the oxidative stress in the neuroblastoma cell line compared to the control, while no change was observed in prostate cancer. In the gene expression findings, it was observed that CoS nanoparticles caused an increase in the expression levels of apoptosis-related genes in the neuroblastoma cell line and induced key protein expression levels of pathways such as ROR-alpha in the prostate cancer cell line. Conclusion: As a result, it was observed that the viability of the neuroblastoma cell line decreased with apoptosis induced by oxidative stress, while this effect was observed in the DU-145 cell line via the ROR-alpha pathway.