JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2025 (SCI-Expanded)
Alveolar echinococcosis (AE) is a parasitic disease caused by Echinococcus multilocularis, where early detection is crucial for effective treatment. This study introduces a novel method for the early diagnosis of liver diseases by differentiating between tumor, AE, and healthy cases using non-contrast CT images, which are widely accessible and eliminate the risks associated with contrast agents. The proposed approach integrates an automatic liver region detection method based on RCNN followed by a CNN-based classification framework. A dataset comprising over 27,000 thorax-abdominal images from 233 patients, including 8206 images with liver tissue, was constructed and used to evaluate the proposed method. The experimental results demonstrate the importance of the two-stage classification approach. In a 2-class classification problem for healthy and non-healthy classes, an accuracy rate of 0.936 (95% CI: 0.925-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}0.947) was obtained, and that for 3-class classification problem with AE, tumor, and healthy classes was obtained as 0.863 (95% CI: 0.847-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}0.879). These results highlight the potential use of the proposed framework as a fully automatic approach for liver classification without the use of contrast agents. Furthermore, the proposed framework demonstrates competitive performance compared to other state-of-the-art techniques, suggesting its applicability in clinical practice.