Medicina (Lithuania), cilt.61, sa.4, 2025 (SCI-Expanded)
Background and Objective: Probiotics have been shown to be effective in controlling various adverse health conditions such as antibiotic-associated diarrhea, inflammatory bowel disease, obesity, and neurological diseases. However, to our knowledge, there is no research on the preventive effect of probiotics on heart damage caused by infections. This study examined the preventive benefits of probiotics against sepsis-related heart injury using a rat model caused by lipopolysaccharide (LPS). Materials and Methods: Four groups of twenty-four male Wistar albino rats, each with six rats, were set up. For 14 days, Group 1 (Sham Group) was given oral normal saline, intraperitoneal Escherichia coli O111-B4 lipopolysaccharide (LPS Group) was given to Group 2, and oral probiotics were given to Group 3 (Probiotic Group). Escherichia coli O111-B4 lipopolysaccharide was injected intraperitoneally after Group 4 (Probiotic + LPS) received oral probiotics containing Lactobacillus rhamnosus GG and Bifidobacterium animalis subsp. lactis BB-12 (109 CFU/day). Blood samples were taken twenty-four hours following the administration of LPS. The animals were then euthanized by cervical dislocation, and samples of cardiac tissue were taken in order to assess any damage to the heart. The following serum values were measured: C-reactive protein (CRP), creatine kinase-myocardial band (CK-MB), cardiac troponin subunit I (cTn-I), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6). The TNF-α, IL-1β, IL-6, glutathione (GSH), malondialdehyde (MDA), Total Oxidant Status (TOS), Total Antioxidant Status (TAS), Oxidative Stress Index (OSI), CRP, CK-MB, and cTn-I levels were assessed in tissue samples. Additionally, staining techniques were used to analyze histopathological alterations in tissues. Results: With the exception of serum IL-6 (p = 0.111), tissue and serum cytokine levels were considerably greater in the sepsis group (Group 2) than in the other groups (p < 0.05 to <0.001). The TAS, GSH, and SOD levels were significantly lower (p < 0.05 to <0.001) in septic rats, although the tissue levels of TOS, OSI, and MDA were significantly higher. With the exception of serum CRP in Group 3 (p = 0.328), the CK-MB, CRP, and cTn-I levels were considerably higher in Group 2 than in the other groups (p < 0.01 to <0.001). When compared to the other groups, histopathological examination showed significant alterations in the LPS group. Conclusions: Probiotics showed positive effects on oxidative stress markers and dramatically decreased sepsis-induced cardiac damage in the LPS-induced sepsis model. These results imply that probiotics could be used as a therapeutic approach to lessen the cardiac damage brought on by sepsis.