Designing a Lead-free and high-density glass for radiation facilities: Synthesis, physical, optical, structural, and experimental gamma-ray transmission properties of newly designed Barium-borosilicate glass sample


Sen Baykal D., Kilic G., Ilik E., Kavaz E., Almisned G., Cakirli R., ...Daha Fazla

JOURNAL OF ALLOYS AND COMPOUNDS, cilt.1, ss.171392, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 1
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1016/j.jallcom.2023.171392
  • Dergi Adı: JOURNAL OF ALLOYS AND COMPOUNDS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Chemical Abstracts Core, Communication Abstracts, INSPEC, Metadex, Public Affairs Index, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.171392
  • Anahtar Kelimeler: Barium-borosilicate glass, Optical properties, FTIR, Glass shield, MCNPX, HPGe
  • Atatürk Üniversitesi Adresli: Evet

Özet

We report the design, synthesis, optical, structural, and gamma-ray attenuation properties of a newly developed Lead-free and high-density borosilicate glass sample for its potential applications in medical and industrial ra-diation facilities. A barium-borosilicate glass sample (BSBaZn) was designed and synthesized using nominal composition of 7B2O3-50SiO2-38ZnO-5BaO. The FTIR spectrum of the BSBaZn is revealed four fundamental regions. These regions are 400-620 cm-1, 620-770 cm-1, 800-1210 cm-1, and 1210-1500 cm-1. Transmittance rate in the wavelength range of 350-1100 nm is reported as 80 %. A high-purity Germanium (HPGe) detector along with an energetic 133Ba radioisotope is also utilized for experimental gamma-ray transmission studies. Various fundamental gamma-ray shielding parameters of BSBaZn are determined and accordingly compared with many other glass shields. MCNPX (version 2.7.0) general purpose Monte Carlo code is utilized for gamma-ray transmission factor (TF) values. The results showed that the synthesized BSBaZn sample has promising struc-tural, optical, and physical properties in addition to promising gamma-ray attenuation properties. The high transparency of BSBaZn along with its high-density may be considered as an important selection criterion for its implementation in protection purposes in medical and industrial radiation facilities, where the source and pa-tients monitoring play a significant role.