Coefficient bounds for <i>q</i>-convex functions related to <i>q</i>-Bernoulli numbers


Breaz D., Orhan H., Arikan H., Cotirla L.

ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, sa.1, ss.77-92, 2025 (SCI-Expanded, Scopus) identifier

Özet

The main objective of this paper is to present and investigate a subclass C(b, q) of q-convex functions in the unit disk that is defined by the q-Bernoulli numbers. For this subclass, we find the upper bounds on the Fekete-Szeg functional, the coefficient bounds, and the second Hankel determinant.