Removal of crystal violet dye from aqueous solutions using Robinia pseudoacacia L. (Fabaceae) Fruits biosorbent


Güllüce E., KARADAYI M., Gülşahin Y., Çolak İ., KOÇ T. Y., HIDIROĞLU İSPİRLİ N., ...Daha Fazla

International Journal of Phytoremediation, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1080/15226514.2024.2438763
  • Dergi Adı: International Journal of Phytoremediation
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Agricultural & Environmental Science Database, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Communication Abstracts, EMBASE, INSPEC, MEDLINE, Metadex, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts
  • Anahtar Kelimeler: Biosorption, crystal violet, ısotherms, kinetics, phytotoxicity, Robinia pseudoacacia
  • Atatürk Üniversitesi Adresli: Evet

Özet

Synthetic dyes are a major source of environmental pollution. In this regard, biosorption is an important treatment method for the removal and detoxification of synthetic dyes from aqueous solutions. Accordingly, the present study was conducted to investigate the potential of Robinia pseudoacacia L. biosorbent (RPF) in the removal of crystal violet (CV) dye from aqueous solutions. To this end, biosorption parameters, including zero charge point, pH, initial dye concentration, biosorbent dose, stirring speed, and temperature, were investigated. Variations in the treated and untreated biosorbent surfaces were characterized using FTIR spectroscopy. The results showed that the RPF biosorbent removed 77% of CV under optimal conditions: pH of 6, initial dye concentration of 10 mg/L, biosorbent dose of 1 g, contact time of 30 min, stirring speed of 150 rpm, and temperature of 298 K. The Dubinin-Radushkevich isotherm (R2= 0.976) and pseudo-second-order kinetic (R2 = 0.995) models were well fitted according to isotherm and kinetic studies. Thermodynamic studies revealed that the process was endothermic according to the ΔG values. Moreover, the phytotoxicity of treated CV solutions was significantly reduced. Thus, the RPF biosorbent was determined to be a low-cost, sustainable, and ecofriendly material for the removal and detoxification of synthetic dyes from aqueous solutions.