APPLICATION OF A USEFUL UNCERTAINTY ANALYSIS AS A METRIC TOOL FOR ASSESSING THE PERFORMANCE OF ELECTROMAGNETIC PROPERTIES RETRIEVAL METHODS OF BIANISOTROPIC METAMATERIALS


Creative Commons License

Hasar U. C., Barroso J. J., ERTUĞRUL M., Sabah C., ÇAVUŞOĞLU B.

PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, cilt.128, ss.365-380, 2012 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 128
  • Basım Tarihi: 2012
  • Doi Numarası: 10.2528/pier12040802
  • Dergi Adı: PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.365-380
  • Atatürk Üniversitesi Adresli: Evet

Özet

We applied a useful uncertainty model, ignored in most metamaterials retrieval studies, to monitor the accuracy of retrieved electromagnetic properties of bianisotropic metamaterial (MM) slabs composed of split-ring resonators and cut wires. Two different MM slab structures are considered to make the analysis complete. As uncertainty-making factors, we took into consideration of uncertainties in scattering (S-) parameters of bianisotropic MM slabs as well as the length of these slabs. The applied uncertainty model is based upon considering the effect of minute change (differential) in uncertainty factors on the retrieved electromagnetic properties of bianisotropic MM slabs. The significant results concluded from the analysis are: 1) any abrupt changes in the phase of S-parameters of bianisotropic MM slabs remarkably influence the retrieved electromagnetic properties; 2) any small-scale loss (i.e., the loss of the substrate) in the bianisotropic MM slabs improves the accuracy of the retrieved electromagnetic properties of these slabs; and 3) precise knowledge of bianisotropic MM slab lengths are required for correct analysis of exotic properties of these slabs. The presented uncertainty analysis can be utilized as a metric tool for evaluating various retrieval methods of MM slabs in the literature.