Engineering bi-layered skin-like nanopads with electrospun nanofibers and chitosan films for promoting fibroblast infiltration in tissue regeneration and wound healing


Barzegar A., Ebrahimzadeh S., Vahdani V., Tohidifar N., Zarrini G., Hatami H., ...Daha Fazla

International Journal of Biological Macromolecules, cilt.277, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 277
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1016/j.ijbiomac.2024.134398
  • Dergi Adı: International Journal of Biological Macromolecules
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, EMBASE, Food Science & Technology Abstracts, INSPEC, Veterinary Science Database
  • Anahtar Kelimeler: Chitosan hydrogel film, Electrospinning nanofiber, Engineered skin-like scaffolds, Regenerative medicine, Tissue engineering, Wound healing
  • Atatürk Üniversitesi Adresli: Evet

Özet

This study presents an innovative bi-layered three-dimensional skin-like nanopad (SLN) engineered for skin tissue regeneration. The SLN integrates a mechanically supportive polycaprolactone nanofibrous layer with a functional chitosan hydrogel film, mimicking natural skin. Our SLN exhibits superior flexibility, with a maximum elongation of 751.71 ± 125 % and exceptional porosity of 95 ± 4.5 %, ensuring effective exudate management due to its high water uptake capacity (4393 ± 72 %). FTIR analysis confirmed a distinctive fiber-hydrogel network within the SLN, which serves as a barrier against Staphylococcus aureus and Pseudomonas aeruginosa infiltration. In vitro cell viability assays with the human fibroblast have consistently demonstrated that 3D bi-layered SLN enhances fibroblast attachment, infiltration, and proliferation by 150 ± 20 %. In vivo studies in a rat model demonstrated significantly faster wound closure, with 60 % on day 7 and 87 % on day 10, compared to the 30 % and 60 % in controls, highlighting the efficacy of SLN. By mimicking the architecture of native skin, this biomimetic bi-layered SLN scaffold provides flexibility and support while accelerating in vivo wound closure by promoting fibroblast proliferation and infiltration. Customizable in size, depth, and shape, the engineered SLN has emerged as a promising platform for advanced wound care and tissue engineering.