From agro-food waste to nanoparticles: green synthesis of copper nanoparticles with lignin peroxidase enzyme produced by Anoxybacillus rupiensis using peanut shells


Sus B., BALTACI M. Ö., NADAROĞLU H., ADIGÜZEL A.

Environmental Science and Pollution Research, cilt.31, sa.39, ss.52049-52059, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 31 Sayı: 39
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1007/s11356-024-34489-y
  • Dergi Adı: Environmental Science and Pollution Research
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, IBZ Online, ABI/INFORM, Aerospace Database, Agricultural & Environmental Science Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, EMBASE, Environment Index, Geobase, MEDLINE, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.52049-52059
  • Anahtar Kelimeler: Anoxybacillus rupiensis BS1, Antimicrobial activity, Copper nanoparticle, Lignin peroxidase enzyme, Peanut shell
  • Atatürk Üniversitesi Adresli: Evet

Özet

This study presents a novel approach for the eco-friendly green synthesis of copper nanoparticles (Cu NPs) using enzymatic mediation which is an environmentally benign alternative to conventional methods, offering control over particle size and shape. Anoxybacillus rupiensis BS1 thermophilic bacterium was isolated from Erzurum’s Pasinler hot spring and lignin peroxidase enzyme production conditions (incubation time 96 h, 40 g/L shell amount, pH 8.5, 150 rpm, and 60 °C temperature) were used in the production of peroxidase enzyme using peanut waste which has been optimized. The characterization of the synthesized Cu NPs was performed using various analytical techniques, including UV–vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM), confirming the successful production of stable and well-defined nanoparticles. Furthermore, the biological activities of the synthesized Cu NPs were explored, revealing their potential for antimicrobial applications. The antibacterial efficacy of the Cu NPs against some pathogens such as Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Streptococcus pyogenes, and Bacillus cereus was examined. It was determined that Cu NPs were effective on all pathogens and had the highest effectiveness against the S. pyogenes pathogen (19.0 mm). This study not only presents an innovative and sustainable approach for the synthesis of Cu NPs but also highlights the multifaceted biological activities of these nanoparticles, opening avenues for diverse applications in the fields of medicine, agriculture, and environmental remediation. The utilization of peanut shell wastes as a substrate for enzyme production adds value to agricultural by-products, contributing to the development of a circular and sustainable economy.