Investigation of color and physicomechanical properties of peek and pekk after storage in a different medium


Creative Commons License

Kaya N., Sasany R., YANIKOĞLU N., Tosun B.

Scientific Reports, cilt.14, sa.1, 2024 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 14 Sayı: 1
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1038/s41598-024-54695-5
  • Dergi Adı: Scientific Reports
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, Chemical Abstracts Core, MEDLINE, Veterinary Science Database, Directory of Open Access Journals
  • Atatürk Üniversitesi Adresli: Evet

Özet

The aim of this study is to assess color stability, solubility, and water sorption on polyether ether ketone (PEEK) and polyether ketone ketone (PEKK) after immersion in different storage conditions. Material and Methods Ninety disc-shaped specimens (8 × 2) were obtained from CAD/CAM blocks [PEEK (n = 45) and PEKK (n = 45)]. Before immersion, baseline color value data were recorded with a spectrophotometer. The specimens were soaked in three solutions red wine, coffee, and distilled water at 37 °C for 28 days. Following immersion, color values were remeasured, and color-change values (ΔE) were calculated. Water sorption and solubility were assessed by mass gain or loss after storage in water for 28 days. The Kruskal–Wallis and the Mann–Whitney U test were used for analysis (P = 0.05). Results ΔE00 between PEEK and PEKK was significantly different statistically (P < 0.001). PEEK presented higher water sorption than PEKK (P = 0.005). The difference in solubility between PEEK and PEKK was not statistically significant (P = 0.163). The materials and storage medium types had a statistically significant impact (P = 0.100). In terms of staining potential, the solutions tested in this experiment were ranked as: coffee > red wine > distilled water. The results of this study demonstrated that PEKK was more successful in polymer-containing CAD/CAM materials as it exhibited less color change and water absorption.