Exploiting Morphophysiological Traits for Yield Improvement in Upland Cotton under Salt Stress


Zafar M. M., Zhang H., Ge P., Iqbal M. S., Muneeb A., Pervaiz A., ...Daha Fazla

JOURNAL OF NATURAL FIBERS, cilt.20, sa.2, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 20 Sayı: 2
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1080/15440478.2023.2282048
  • Dergi Adı: JOURNAL OF NATURAL FIBERS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Biotechnology Research Abstracts, CAB Abstracts, Communication Abstracts, Compendex, Environment Index, INSPEC, Metadex, Veterinary Science Database, Civil Engineering Abstracts
  • Atatürk Üniversitesi Adresli: Evet

Özet

The increased land salinization threatens land productivity, food security, and economic losses. The study used a comprehensive set of morpho-physiological, biochemical, and fiber quality parameters to examine the genetic variability of 24 cotton genotypes against 15 dSm-1 salt stress. The general linear model (GLM) effect revealed significant effects of salinity for studied accessions except for lint percentage and fiber strength. The genotype x treatment effects were also significant for all studied traits, while non-significant effects were observed for seed number per boll (SNB), potassium to sodium ratio (K+/Na+), K+, peroxidase (POD), and catalase (CAT). A notable reduction for all traits was observed except for fiber fineness, superoxide (SOD), CAT, POD, carotenoid contents, and hydrogen peroxide (H2O2), which were increased under saline conditions. Based on multivariate analyses, hybrids viz. MS-71x KAHKASHAN, followed by MS-71x CRS-2007 and NS-131x CRS-2007, performed well under both normal stressed conditions. Moreover, biochemical and agronomical traits in PCA validate that the MS-71x KAHKASHAN is the most desirable genotype under both conditions. Better hybrid performance under normal and 15 dSm-1 salt stress conditions supports the hybrid adaptability under salinity stress environments. The outcome would assist breeders in developing salt-tolerant cotton varieties under climate change scenarios.