International Journal of Biological Macromolecules, cilt.183, ss.1371-1378, 2021 (SCI-Expanded)
© 2021 Elsevier B.V.The effects of nano-ZnO and nano-SiO2 nanoparticles on the properties of starch-based films prepared by extrusion blowing were investigated in this study. New hydrogen bonds between hydroxypropyl starch (HS) and nanoparticles during the extrusion process were formed as shown by Fourier transform infrared spectroscopy (FTIR). The diffraction patterns of nanocomposite films reinforced with nano-ZnO were similar to those of nano-ZnO, except that the peak intensity decreased, whereas, the addition of SiO2 nanoparticles decreased the intensity of the main characteristic peaks, regardless of the HS and nano-ZnO reinforced films. The thermal stability, tensile strength, moisture barrier property, and surface hydrophobicity of nanocomposite films were improved with the incorporation of nano-ZnO and nano-SiO2, the finding that could be attributed to a strong interplay between nano-ZnO, nano-SiO2, and the starch matrix during the extrusion film blowing process. Similarly, the nano-ZnO/nano-SiO2 composite-reinforced films showed smooth, flat, and uniform appearances by scanning electron microscopy (SEM) and atomic force microscope (AFM) tests. In sum, Nano-ZnO and nano-SiO2 nanoparticles can be used as composite reinforcing agents for preparation of starch-based films through extrusion blowing.