Mechanical and durability properties of polymer fiber reinforced one-part foam geopolymer concrete: A sustainable strategy for the recycling of waste steel slag aggregate and fly ash


Ahıskalı A., Ahıskalı M., Bayraktar O. Y., KAPLAN G., Assaad J.

Construction and Building Materials, cilt.440, 2024 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 440
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1016/j.conbuildmat.2024.137492
  • Dergi Adı: Construction and Building Materials
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, CAB Abstracts, Communication Abstracts, Compendex, INSPEC, Metadex, Veterinary Science Database, Civil Engineering Abstracts
  • Anahtar Kelimeler: Durability, Foam concrete, Polymer fibers, Recycling, Sustainability, Waste slag aggregate
  • Atatürk Üniversitesi Adresli: Evet

Özet

This paper assesses the feasibility of geopolymers (GPs) for use as lightweight foamed concrete, a crucial step towards reducing the carbon footprint and conserving natural resources. A powder activator (i.e., sodium metasilicate) less harmful to the environment was used to activate the fly ash-based GPs, while the limestone aggregates were gradually replaced by up to 100 % waste slag materials to conserve natural resources. Polypropylene fibers were incorporated at high dosage rates of 1 % or 2 %, by volume, to reduce the concrete density and improve its durability properties. Tested properties include flow, density, water absorption, porosity, thermal conductivity, mechanical strengths, drying shrinkage, and resistance to sulfate attack, freeze/thaw cycles, and elevated temperature. Results showed that the concrete mechanical properties improved when the limestone aggregate was replaced by slag materials, but the density and thermal conductivity were slightly curtailed at higher addition rates. The use of polypropylene fibers proved efficient to improve the resistance to freeze/thaw cycles, drying shrinkage, and expansion due to sulphate attack. Such data can help sustain the green building industry development by reducing the carbon footprint and conserving natural resources in foamed concrete applications.