PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART H-JOURNAL OF ENGINEERING IN MEDICINE, cilt.228, sa.4, ss.409-417, 2014 (SCI-Expanded)
Accurate prediction of long-term behaviour of cemented hip implants is very important not only for patient comfort but also for elimination of any revision operation due to failure of implants. Therefore, a more realistic computer model was generated and then used for both deterministic and probabilistic analyses of the hip implant in this study. The deterministic failure analysis was carried out for the most common failure states of the cement mantle. On the other hand, most of the design parameters of the cemented hip are inherently uncertain quantities. Therefore, the probabilistic failure analysis was also carried out considering the fatigue failure of the cement mantle since it is the most critical failure state. However, the probabilistic analysis generally requires large amount of time; thus, a response surface method proposed in this study was used to reduce the computation time for the analysis of the cemented hip implant. The results demonstrate that using an efficient probabilistic approach can significantly reduce the computation time for the failure probability of the cement from several hours to minutes. The results also show that even the deterministic failure analyses do not indicate any failure of the cement mantle with high safety factors, the probabilistic analysis predicts the failure probability of the cement mantle as 8%, which must be considered during the evaluation of the success of the cemented hip implants.