INVESTIGATIONS ON A RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION AND GRADIENT SOLITONS


Creative Commons License

De K., De U. C., GEZER A.

Kragujevac Journal of Mathematics, cilt.49, sa.3, ss.387-400, 2025 (ESCI) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 49 Sayı: 3
  • Basım Tarihi: 2025
  • Doi Numarası: 10.46793/kgjmat2503.387d
  • Dergi Adı: Kragujevac Journal of Mathematics
  • Derginin Tarandığı İndeksler: Emerging Sources Citation Index (ESCI), Scopus, zbMATH
  • Sayfa Sayıları: ss.387-400
  • Anahtar Kelimeler: gradient Einstein solitons, gradient Ricci solitons, gradient Yamabe solitons, m-quasi Einstein solitons, Riemannian manifolds
  • Atatürk Üniversitesi Adresli: Evet

Özet

This article carries out the investigation of a three-dimensional Riemannian manifold N3 endowed with a semi-symmetric type non-metric connection. Firstly, we construct a non-trivial example to prove the existence of a semi-symmetric type non-metric connection on N3. It is established that a N3 with the semi-symmetric type non-metric connection, whose metric is a gradient Ricci soliton, is a manifold of constant sectional curvature with respect to the semi-symmetric type non-metric connection. Moreover, we prove that if the Riemannian metric of N3 with the semi-symmetric type non-metric connection is a gradient Yamabe soliton, then either N3 is a manifold of constant scalar curvature or the gradient Yamabe soliton is trivial with respect to the semi-symmetric type non-metric connection. We also characterize the manifold N3 with a semi-symmetric type non-metric connection whose metrics are Einstein solitons and m-quasi Einstein solitons of gradient type, respectively.