Exploring the genetic diversity and population structure of fenugreek (<i>Trigonella foenum-graecum</i> L.) genotypes through inter-primer binding site (iPBS)-retrotransposon marker system


Haliloğlu K., Özer H., Melik S., Çoban F., Türkoğlu A.

GENETIC RESOURCES AND CROP EVOLUTION, cilt.71, sa.7, ss.3253-3266, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 71 Sayı: 7
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1007/s10722-023-01849-5
  • Dergi Adı: GENETIC RESOURCES AND CROP EVOLUTION
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Agricultural & Environmental Science Database, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Geobase, Veterinary Science Database
  • Sayfa Sayıları: ss.3253-3266
  • Anahtar Kelimeler: Fenugreek, Polymorphism, Principal component analysis, Retrotransposons
  • Atatürk Üniversitesi Adresli: Evet

Özet

Fenugreek, a key medicinal-aromatic plant, offers rich bioactive compounds and nutritional value. Its diverse applications in cuisine and pharmaceuticals, coupled with health benefits like anti-diabetic and antioxidant properties, underscore its significance. Assessing genetic diversity becomes crucial for effective conservation and utilization. In this study, we examined the molecular diversity and population structure of 34 fenugreek genotypes collected from 18 countries worldwide using 24 inter-primer binding site (iPBS) markers. The iPBS primers produced 499 bands, with the total number of bands per primer ranging from 15 (iPBS-2224) to 26 (iPBS-2077), averaging 20.79. Polymorphism information content (PIC) ranged from 0.03 (iPBS-2374) to 0.34 (iPBS-2237), averaging 0.23. In the molecular analysis, the G1 genotype (Isfahan/Iran) exhibited the maximum effective number of alleles (Ne), Nie’s gene diversity (He), and Shannon’s information index (I) at 1.946, 0.486, and 0.679, respectively. Conversely, the G34 genotype (India/B) displayed the lowest values at 1.539, 0.350, and 0.535, respectively. Utilizing the unweighted pair-group means average (UPGMA) method, the iPBS-based tree revealed three distinct groups corresponding to the genomic constitution of fenugreek genotypes, a pattern partially corroborated by principal component analysis (PCA). Further model-based cluster analysis classified the 34 genotypes into four subpopulations, with expected heterozygosity (He) values of 0.428, 0.390, 0.426, and 0.007, respectively. The F-statistic (Fst) values for these subpopulations were 0.197, 0.210, 0.187, and 0.356, respectively. These findings underscored significant genetic variation among the tested fenugreek genotypes, thereby demonstrating the efficacy of iPBS markers in accurately assessing genetic diversity and phylogenetic relationships within fenugreek populations.