Genome-wide analysis of mRNAs and lncRNAs in Mycoplasma bovis infected and non-infected bovine mammary gland tissues


Özdemir S., Altun S.

Molecular and Cellular Probes, cilt.50, 2020 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 50
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1016/j.mcp.2020.101512
  • Dergi Adı: Molecular and Cellular Probes
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, EMBASE, Food Science & Technology Abstracts, MEDLINE, Veterinary Science Database
  • Anahtar Kelimeler: Mycoplasma bovis, Mammary gland, Bovine, Gene expression, RNA-seq, LONG NONCODING RNAS, MASTITIS, DAIRY, EVOLUTION, REVEALS, IDENTIFICATION, TRANSMISSION, INHIBITION, TRANSCRIPT, EXPRESSION
  • Atatürk Üniversitesi Adresli: Evet

Özet

© 2020 Elsevier LtdMycoplasma bovis (M. bovis) causes diseases such as arthritis, pneumonia, abortion, and mastitis, leading to great losses in the bovine dairy industries. RNA types such as messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs) play significant roles in regulating the immune responses triggered by bacteria. The expression profiles of mRNA and lncRNA as they occur in bovine mammary gland tissues infected with M. bovis are still not well understood. To illuminate this issue, transcription analysis of mRNA and LncRNAs were conducted on the mammary gland tissues belonging to Holstein cattle infected and not infected with M. bovis. The analysis revealed 1310 differentially expressed mRNAs and 57 differentially expressed lncRNAs in the bovine mammary gland tissues infected and not infected with M. bovis. In addition, 392 novel lncRNAs were detected, 19 of which were differentially expressed. Gene ontology analysis reveals that differentially expressed mRNAs and lncRNAs play significant roles in such vital biological pathways as metabolic pathways, T-cell receptor signaling, TGF-beta signaling, pathways in cancer, PI3K-Akt signaling, NF-kappa B signaling, mTOR signaling, and apoptosis, including in the immune response to cancer. Based on our literature review, this study is the first genome-wide lncRNA research conducted on bovine mammary gland tissues infected with M. bovis. Our results provide bovine mammary gland lncRNA and mRNA resources to understand their roles in the regulation of the immune response against the agent M. bovis in bovine mammary gland tissues.