Synergistic Photocatalysis of Bayerite/Zeolite Loaded TiO2 Nanocomposites for Highly Efficient Degradation of Organic Pollutants in Aqueous Environments


Baha A. A., Ait-Karra A., Idouhli R., Tabit K., Zakir O., Dikici B., ...Daha Fazla

SILICON, cilt.16, ss.1-14, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 16
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1007/s12633-024-03056-y
  • Dergi Adı: SILICON
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Chemical Abstracts Core, Compendex, INSPEC
  • Sayfa Sayıları: ss.1-14
  • Atatürk Üniversitesi Adresli: Evet

Özet

Methylene blue dye (MB), prevalent in textiles like cotton, wood, and silk, raises environmental and health concerns. This study presents a successful synthesis of a Bayerite/zeolite nanocomposite powder using fumed silica by-product and aluminum nitrate. Hydrothermal exploration of factors, including duration, temperature, and Al/Si ratios, revealed that high temperature (160 degrees C) and short duration (6h) favored optimal crystallization of bayerite/zeolite phases. Subsequently, an integrated photocatalytic adsorbent (IPA) was developed by mechanically mixing the synthesized bayerite/zeolite with TiO2, followed by calcination (500 degrees C, 2 h), demonstrating superior efficiency in MB photodegradation under UV-Vis light. The IPA achieved 100% degradation efficiency for 60 mg/L of MB and maintained good photostability over three cycles. The bayerite/zeolite-supported TiO2 nanocomposite exhibited the generation of positive holes (h +) and active hydroxyl radicals (OH center dot), showcasing its potential as a promising material for wastewater treatment applications.