Atıf İçin Kopyala
Ayazoglu R., Ekincioglu I., Şener S. Ş.
FILOMAT, cilt.36, sa.10, ss.3321-3330, 2022 (SCI-Expanded)
-
Yayın Türü:
Makale / Tam Makale
-
Cilt numarası:
36
Sayı:
10
-
Basım Tarihi:
2022
-
Doi Numarası:
10.2298/fil2210321a
-
Dergi Adı:
FILOMAT
-
Derginin Tarandığı İndeksler:
Science Citation Index Expanded (SCI-EXPANDED), Scopus, zbMATH
-
Sayfa Sayıları:
ss.3321-3330
-
Anahtar Kelimeler:
Approximation, Hardy averaging operator, Power-type weighted Sobolev spaces with variable exponent, Power-type weighted grand Lebesgue spaces with variable exponent, KANTOROVICH OPERATORS, UNIFORM BOUNDEDNESS, MAXIMAL-FUNCTION, LEBESGUE SPACES, INEQUALITIES
-
Atatürk Üniversitesi Adresli:
Evet
Özet
We investigate the problem of approximating function f in the power-type weighted variable exponent Sobolev space W-alpha(.)(r,p(.)) (0, 1), (r = 1, 2,...), by the Hardy averaging operator A (f) (x) = 1/x integral(x)(0) f (t)dt. If the function f lies in the power-type weighted variable exponent Sobolev space W-alpha(.)(r,p(.)) (0, 1), it is shown that