JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, cilt.6, sa.1, ss.51-67, 2022 (SCI-Expanded)
In this paper, we introduce a modification of the extragradient algorithm with a non-monotonic stepsize rule to solve equilibrium problems. This modification is based on the inertial subgradient technique. Under mild conditions, such as, the Lipschitz continuity and the monotonicity of a bifunction (including the pseudomonotonicity), the strong convergence of the proposed algorithm is established in a real Hilbert space. The proposed algorithm uses a non-monotonic stepsize rule based on the local bifunction information rather than its Lipschitz-type constants or other line search methods. We present various numerical examples, which illustrate the strong convergence of the algorithm.