TOXICOLOGY AND INDUSTRIAL HEALTH, cilt.39, sa.7, ss.345-355, 2023 (SCI-Expanded)
There are various studies on the toxicological potentials of conventionally synthesized zinc oxide (ZnO) nanoparticles, which are useful tools for many medical applications. However, knowledge about the biologically synthesized ones is still limited. In this study, the potential of producing ZnO nanoparticles via a green synthesis method, which enables safer, environmentally, economical and controlled production by using the Symphoricarpos albus L. plant, was investigated. For this purpose, aqueous extract was obtained from the fruits of the plant and reacted with zinc nitrate precursor. Characterization of the synthesized product was carried out by SEM and EDAX analyzes. In addition, the biosafety of the product was also investigated by using the Ames/Salmonella, E. coli WP2, Yeast DEL, seed germination, and RAPD test systems. The results obtained from SEM studies showed that spherical nanoparticles with an average diameter of 30 nm were synthesized as a result of the reaction. EDAX findings confirmed that these nanoparticles were composed of Zn and O elements. On the other hand, according to the findings of the biocompatibility tests, the synthesized nanoparticle did not show any toxic and genotoxic effects up to a concentration of 640 mu g/ml in any of the test systems. Accordingly, considering the findings of our study, it was concluded that the aqueous extract of S. albus fruits can be used for the green synthesis of ZnO nanoparticles, the products obtained successfully passed the biocompatibility tests in our study, and additionally, more comprehensive biocompatibility tests should be performed before industrial scale production.