Synthesis and characterization of newly developed phosphate-based glasses through experimental gamma-ray and neutron spectroscopy methods: Transmission and dose rates


Kavaz E., Ersundu M. Ç., Ersundu A. E., Tekin H.

CERAMICS INTERNATIONAL, cilt.1, ss.1-12, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 1
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1016/j.ceramint.2022.01.266
  • Dergi Adı: CERAMICS INTERNATIONAL
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Chemical Abstracts Core, Communication Abstracts, Compendex, INSPEC, Metadex, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.1-12
  • Anahtar Kelimeler: Phosphate glasses, Gamma-ray spectroscopy, Neutron, Glass synthesis
  • Atatürk Üniversitesi Adresli: Evet

Özet

In this study, four new phosphate-based glasses with the compositions of CaO-Na2O-K2O-P2O5 (PN system), CaO-Na2O-K2O-Al2O3-P2O5 (PA system) and CaO-Na2O-K2O-Al2O3-SiO2-P2O5 (PS system) were synthesized and characterized through experimental gamma-ray and neutron spectroscopy methods. Glass densities were then measured experimentally and evaluated theoretically. Next, a high purity Germanium (HPGe) detector was used for determining the fundamental gamma-ray transmission parameters in 35.4-383 keV gamma-ray energies emitted from 133Ba source (Radioactivity: 3Ci). Additionally, the experimental setup was used to determine the equivalent dose (EAD) to get a better knowledge of fast neutron attenuation. Our findings indicate that experimental gamma-ray transmission measurements are consistent with standard theoretical data (EpiXS). Consequently, PA10 was shown to have higher gamma-ray and neutron attenuation capabilities when compared to the other glass samples studied. Our outcomes showed that increasing the molar contribution of Al2O3 to the phosphate-based glasses increased not only their transparency but also their gamma-ray and neutron attenuation capacities. It can be concluded that substituting Al2O3 for P2O5 is a functional and monotonic tool for improving the optical, gamma-ray, and neutron attenuation of phosphate-based glasses, which are being evaluated as prospective shielding materials for medical and industrial radiation facilities.