JOURNAL OF ADHESION, cilt.93, sa.9, ss.674-687, 2017 (SCI-Expanded)
This article presents the experimental and numerical results of adhesively bonded hybrid single-lap joint (SLJ) geometry with different configurations of lower and upper adherends subject to a four-point bending test. AA2024-T3 aluminium alloy and carbon/epoxy composites with different lamina numbers and four different stacking angles as adherend and two-part liquid, structural adhesive DP 125 as paste adhesive were used. In the experimental studies, three different types of SLJs were produced using lower material that had a constant thickness of AA2024-T3 aluminium alloy and upper material of composite material that had different numbers of layers and four different stacking sequences ([0], [0/90], [45/-45], [0/45/-45/90]). In the numerical analysis, stress analyses of the SLJs were performed with a three-dimensional non-linear finite element method and the composite adherends were assumed to behave as linearly elastic materials, while the adhesive and aluminium adherend were assumed to be non-linear. Consequently, the change of stacking sequence and thickness of the composite in adhesively bonded SLJs altered the location of the neutral axis in the joint. This situation substantially influences the load-carrying capacity of the joint.