Physio-biochemical and molecular effects of copper nanoparticle under salinity stress in <i>Triticum aestivum L</i>


Shadidizaji A., TAŞPINAR M. S.

JOURNAL OF MOLECULAR STRUCTURE, cilt.1343, 2025 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 1343
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1016/j.molstruc.2025.142832
  • Dergi Adı: JOURNAL OF MOLECULAR STRUCTURE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Chemical Abstracts Core, Chimica, Compendex, INSPEC
  • Atatürk Üniversitesi Adresli: Evet

Özet

Salinity stress induces oxidative damage and impairs plant productivity, necessitating innovative mitigation strategies. This study elucidates the novel role of foliar-applied copper oxide nanoparticles (CuONP: 0, 10, 20, 40 mg/L) in alleviating 200 mM NaCl-induced stress in two distinct wheat genotypes, Bezostaja-1 and K & imath;rm & imath;z & imath; K & imath;l & ccedil;& imath;k. We demonstrate, for the first time, that 20 mg/L CuONP optimally enhance salinity tolerance by uniquely modulating genotype-specific responses. In Bezostaja-1, CuONP reduced malondialdehyde (MDA) by 38 % and cell membrane damage (CMD) by 42 %, while increasing proline content by 55 % under salinity. K & imath;rm & imath;z & imath; K & imath;l & ccedil;& imath;k exhibited superior K/Na ratio (2.1-fold) and Cu uptake (1.8-fold) at 20 mg/L CuONP. Both genotypes showed upregulated expression of salinity-responsive genes (TaSOS1, TaNHX1) and antioxidant enzymes (SOD, CAT, APX) by 1.5-2.3-fold, correlating with improved biomass (27-33 %) and root architecture. The non-linear dose-response highlights 20 mg/L as the critical threshold for efficacy, beyond which benefits plateau. These findings establish genotype-specific CuONP mechanisms and provide a nanotechnology-driven strategy to enhance salt tolerance in wheat.