Convergence Theorems of a Faster Iteration Process Including Multivalued Mappings with Analytical and Numerical Examples


GÜNDÜZ B., ALAGÖZ O., AKBULUT S.

FILOMAT, cilt.32, sa.16, ss.5665-5677, 2018 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 32 Sayı: 16
  • Basım Tarihi: 2018
  • Doi Numarası: 10.2298/fil1816665g
  • Dergi Adı: FILOMAT
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.5665-5677
  • Atatürk Üniversitesi Adresli: Evet

Özet

In this paper, we first give the modified version of the iteration process of Thakur et al. [15] which is faster than Picard, Mann, Ishikawa, Noor, Agarwal et al. [2] and Abbas et al. [1] processes. Secondly, we prove weak and strong convergence theorems of this iteration process for multivalued quasi nonexpansive mappings in uniformly convex Banach spaces. Thirdly, we support our theorems with analytical examples. Finally, we compare rates of convergence for multivalued version of iteration processes mentioned above via a numerical example.