CHEMICAL ENGINEERING COMMUNICATIONS, cilt.204, sa.8, ss.852-857, 2017 (SCI-Expanded)
Highly ordered titanium nanotubes (TiO2 NTs) photocatalyst was prepared by the anodic oxidation method, and AgS, CdS, and AgS/CdS nanoparticles were doped on the surface of TiO2 NTs by the successive ion adsorption and reaction (SILAR) method. The photocatalysts were characterized by SEM, EDS, XRD, and potentiostat system. The SEM and EDS analyses respectively show that the average outer diameter of prepared photocatalysts is in the range of 50-120 nm, and the presence of Ti, O, Ag, and Cd is successfully proved. The photocatalytic properties of TiO2 NTs and doped TiO2 NTs were studied by measuring the degradation of Methylene Blue (MB) solution. The experimental results show that AgS/CdS/TiO2 photocatalyst exhibited most efficient photocatalytic activity with 340 mu A/cm(2) photocurrent value. AgS/CdS/TiO2 NTs photocatalyst shows up to 22.20% higher than TiO2 NTs, 16.42% higher than CdS/TiO2 NTs, and 4.3% higher than AgS/TiO2 NTs.