Size-Controlled Electrochemical Growth of PbS Nanostructures into Electrochemically Patterned Self-Assembled Monolayers


Nisanci F., Demir U.

LANGMUIR, cilt.28, sa.22, ss.8571-8578, 2012 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 28 Sayı: 22
  • Basım Tarihi: 2012
  • Doi Numarası: 10.1021/la301377r
  • Dergi Adı: LANGMUIR
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.8571-8578
  • Atatürk Üniversitesi Adresli: Evet

Özet

1-Hexadecanethiol self-assembled monolayers (HDT SAMs) on Au(111) were used as a molecular resist to fabricate nanosized patterns by electrochemical reductive partial desorption for subsequent electrodeposition of PbS from the same solution simultaneously. The influences of potential steps of variable pulse width and amplitude on the size and the number of patterns were investigated. The kinetics of pattern formation by reductive desorption appears to be instantaneous according to chronoamperometric and morphological investigations. PbS structures were deposited electrochemically into the patterns on HDT SAMs by a combined electrochemical technique, based on the codeposition from the same saturated PbS solution at the underpotential deposition of Pb and S. Scanning tunneling microscopy measurements showed that all of the PbS deposits were disk shaped and uniformly distributed on Au(111) surfaces. Preliminary results indicated that the diameter and the density of PbS deposits can be controlled by controlling the pulse width and amplitude of potential applied at the reductive removal stage of HDT SAMs and the deposition time during the electrochemical deposition step.