ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, cilt.1, sa.1, ss.1-16, 2024 (SCI-Expanded)
Feature selection, reducing number of input variables to develop classification model, is an important process to reduce computational and modeling complexity and affects the performance of image process. In this paper, we have proposed new statistical approaches for feature selection based on sample selection. We have applied our new approaches to grapevine leaves data that possess properties of shape, thickness, featheriness, and slickness that are investigated in images. To analyze such kind of data by using image process, thousands of features are created and selection of features plays important role to predict the outcome properly. In our numerical study, convolutional neural networks have been used as feature extractors and then obtained features from the last average pooling layer to detect the type of grapevine leaves from images. These features have been reduced by using our suggested four statistical methods: simple random sampling, ranked set sampling, extreme ranked set sampling, moving extreme ranked set sampling. Then, selected features have been classified with artificial neural network and we obtained the best accuracy of 97.33% with our proposed approaches. Based on our empirical analysis, it has been determined that the proposed approach exhibits efficacy in the classification of grapevine leaf types. Furthermore, it possesses the potential for integration into various computational devices.