Genome-Wide Analysis of <i>Glutathione S-Transferase</i> Gene Family in <i>P. vulgaris</i> Under Drought and Salinity Stress


Muslu S., Kasapoğlu A. G., Güneş E., Aygören A. S., YİĞİDER E., İlhan E., ...Daha Fazla

PLANT MOLECULAR BIOLOGY REPORTER, cilt.42, sa.1, ss.57-76, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 42 Sayı: 1
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1007/s11105-023-01400-x
  • Dergi Adı: PLANT MOLECULAR BIOLOGY REPORTER
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Agricultural & Environmental Science Database, BIOSIS, CAB Abstracts
  • Sayfa Sayıları: ss.57-76
  • Anahtar Kelimeler: Cis-acting elements, GST, In silico analysis, Phylogenetic analysis, qRT-PCR, RNAseq
  • Atatürk Üniversitesi Adresli: Evet

Özet

The enzymes known as glutathione S-transferases (GST), which are present in many evolved organisms, are essential for the defense against reactive oxygen species. GSTs have a role in the development of defenses against biotic and abiotic challenges, especially defending plants from various stresses such as drought, salinity, and heavy metal. This study uses a genome-wide investigation of the GST gene family in Phaseolus vulgaris to pinpoint several distinctive traits. 55 Pv-GST proteins have been identified in P. vulgaris. The molecular weights of these proteins range from 15.02 kDa to 47.99 kDa; the range of amino acid numbers 132 to 420 and the range of theoretical isoelectric points 5.03 to 9.61 were identified. Pv-GST genes are estimated to have at least 2 and a maximum of 10 exons, with an average of 4 exons. Phylogenetic analysis was performed with GST proteins from Arabidopsis thaliana, Glycine max, and Phaseolus vulgaris species, and subfamilies of these GSTs were identified. Using RNAseq data, the expression profiles of Pv-GST genes in leaf tissue of common bean during drought and salinity stress were identified. Using the obtained sequence data, primers for qRT-PCR were designed. Changes in the expression profiles of GST genes caused by salt and drought stress and melatonin treatments in two different common bean cultivars were determined by qRT-PCR experiments. Under drought and salt stress, the expression levels of GSTs decreased, while melatonin treatment with few exceptions increased these expression levels. As a result of this study, it was observed that Pv-GST genes may play a role in the growth and development of bean and may be involved in the response to abiotic stresses. Moreover, the results of this study will provide a basis for functional gene research and the expression profiles and qRT-PCR results under different stress conditions in common bean will provide a valuable contribution to the understanding of the functions of the GST gene family.