ANDROLOGIA, cilt.53, sa.2, 2021 (SCI-Expanded)
This study has been conducted to investigate the effect of hesperidin on colistin-induced reproductive damage in male rats. Twenty-four adult male Sprague Dawley rats were used as animal material. They were divided into four groups: control group, received physiological saline for 7 days by oral gavage; hesperidin group, received 300 mg/kg day hesperidin for 7 days; colistin group, received 73 mg/kg (total dose) colistin during 7 days; and colistin + hesperidin group, received 300 mg/kg day hesperidin following the colistin treatment. At the end of the study, routine spermatological parameters and biochemical evaluations were assayed. Also, apoptosis and autophagy biomarkers in testes were evaluated. Colistin increased oxidative stress, apoptosis and autophagy expression levels in testis. Hesperidin supplementation significantly decreased the oxidative stress levels in the testes of the colistin + hesperidin group when compared to the colistin group. The highest apoptosis and autophagy expression levels were detected in the colistin group. These values were statistically lower in the colistin + hesperidin group when compared to the colistin group. Colistin treatment decreased the percentage of sperm motility and increased sperm abnormality. Hesperidin supplementation mitigated significantly mentioned side effects compared to the colistin group. In conclusion, hesperidin supplementation can be a good strategy to mitigate colistin-induced testicular toxicity.