Journal of Applied Toxicology, 2025 (SCI-Expanded, Scopus)
Graphene oxide (GO) and carbon nanotube (CNT)-based nanomaterials have attracted significant interest in various industrial and biomedical applications due to their unique physicochemical properties; however, concerns about their potential toxicity, especially when modified with additives like melamine (M), remain largely unresolved. This study investigates the toxicological effects and underlying mechanisms of graphene oxide-melamine (GO-M) and carbon nanotube-melamine (CNT-M) nanoparticles in zebrafish (Danio rerio) embryos and larvae. To this end, developmental toxicity, phenotypic and behavioral changes, as well as histopathological and immunofluorescence alterations, were evaluated following acute exposure to GO-M and CNT-M nanoparticles at concentrations of 5, 10, and 20 mg/L. Results showed that both nanoparticles delayed larval hatching, particularly at higher concentrations (10 and 20 mg/L). Malformations were observed at 20 mg/L in the GO-M group and at 10 and 20 mg/L in the CNT-M group. Additionally, significant changes in larval length and eye area were observed at all concentrations for both nanoparticles. Behavioral assessments revealed that CNT-M exposure at 10 and 20 mg/L significantly impaired head sensorimotor reflexes, while all concentrations affected tail reflexes. In contrast, GO-M exposure did not significantly alter sensorimotor responses. These findings suggest differential toxic mechanisms and neurobehavioral effects of GO-M and CNT-M nanoparticles during early zebrafish development.