Carvacrol Reduces Mercuric Chloride-Induced Testicular Toxicity by Regulating Oxidative Stress, Inflammation, Apoptosis, Autophagy, and Histopathological Changes


Simsek H., GÜR C., KÜÇÜKLER S., İLERİTÜRK M., Akaras N., Oz M., ...Daha Fazla

BIOLOGICAL TRACE ELEMENT RESEARCH, cilt.202, sa.10, ss.4605-4617, 2024 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 202 Sayı: 10
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1007/s12011-023-04022-2
  • Dergi Adı: BIOLOGICAL TRACE ELEMENT RESEARCH
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, Chemical Abstracts Core, EMBASE, Food Science & Technology Abstracts, Pollution Abstracts, Veterinary Science Database
  • Sayfa Sayıları: ss.4605-4617
  • Anahtar Kelimeler: Apoptosis, Carvacrol, Inflammation, Mercuric chloride, Oxidative stress, Testicular toxicity
  • Atatürk Üniversitesi Adresli: Evet

Özet

Mercuric chloride (HgCl2) is a heavy metal that is toxic to the human body. Carvacrol (CAR) is a flavonoid found naturally in plants and has many biological and pharmacological activities including anti-inflammatory, antioxidant, and anticancer activities. This study aimed to investigate the efficacy of CAR in HgCl2-induced testicular tissue damage. HgCl2 was administered intraperitoneally at a dose of 1.23 mg/kg body weight alone or in combination with orally administered CAR (25 mg/kg and 50 mg/kg body weight) for 7 days. Biochemical and histological methods were used to investigate oxidative stress, inflammation, apoptosis, and autophagy pathways in testicular tissue. CAR treatment increased HgCl2-induced decreased antioxidant enzyme (SOD, CAT, and GPx) activities and GSH levels. In addition, CAR reduced MDA levels, a marker of lipid peroxidation. CAR decreased the levels of inflammatory mediators NF-kappa B, TNF-alpha, IL-1 beta, COX-2, iNOS, MAPK14, MAPK15, and JNK. The increases in apoptotic Bax and Caspase-3 with HgCl2 exposure decreased with CAR, while the decreased antiapoptotic Bcl-2 level increased. CAR reduced HgCl2-induced autophagy damage by increasing Beclin-1, LC3A, and LC3B levels. Overall, the data from this study suggested that testicular tissue damage associated with HgCl2 toxicity can be mitigated by CAR administration.