Evaluation of Therapeutic Effects of Quercetin Against Achilles Tendinopathy in Rats via Oxidative Stress, Inflammation, Apoptosis, Autophagy, and Metalloproteinases


Semis H. S., Gür C., İleritürk M., Kandemir F. M., Kaynar Ö.

AMERICAN JOURNAL OF SPORTS MEDICINE, cilt.50, sa.2, ss.486-498, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 50 Sayı: 2
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1177/03635465211059821
  • Dergi Adı: AMERICAN JOURNAL OF SPORTS MEDICINE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, CAB Abstracts, CINAHL, EBSCO Education Source, Education Abstracts, EMBASE, MEDLINE, SportDiscus
  • Sayfa Sayıları: ss.486-498
  • Anahtar Kelimeler: collagenase, inflammation, metalloproteinases, quercetin, tendinopathy, LEVEL LASER THERAPY, INDUCED TOXICITY, INJURY, TENDON, MODEL, SUPPRESSION, MODULATION, PATHWAY, TISSUES, DAMAGE
  • Atatürk Üniversitesi Adresli: Evet

Özet

Background: Achilles tendinopathy, seen in athletes and manual labor workers, is an inflammatory condition characterized by chronic tendon pain. Owing to the toxicity that develops in various organs attributed to the use of anti-inflammatory drugs, there is a need for new therapeutic agents. Purpose: In the present study, the effects of quercetin (Que), the one that attracted the most attention of researchers studying this group of flavonoids, were investigated against collagenase-induced tendinopathy. Study Design: Controlled laboratory study. Methods: A total of 35 Sprague-Dawley rats were used in the study. Tendinopathy was created by injecting a single dose of collagenase (10 mu L; 10 mg/mL) into the tendons of rats. Thirty minutes after the injection, Que was administered at doses of 25 or 50 mg/kg. Que administration was carried out for 7 days. Animals underwent a motility test at the end of the study. In addition, markers of oxidative stress, inflammation, apoptosis, and autophagy, as well as the expression levels of matrix metalloproteinases (MMPs 2, 3, 9, and 13), ICAM-1, and STAT3, were measured in tendon tissues with biochemical, molecular, and Western blot techniques. Results: The results showed that oxidative stress, inflammation, apoptosis, and autophagy were triggered by the injection of collagenase. In addition, MMPs, ICAM-1, and STAT3 were activated to participate in the development of tendinopathy. Que was found to reduce ICAM-1 levels in tendon tissue. Moreover, Que showed antioxidant, anti-inflammatory, antiapoptotic, and antiautophagic effects on tendons against tendinopathy. More important, Que suppressed the expression of MMPs in the tendon tissues. Conclusion: Que has protective properties against collagenase-induced tendon damage in rats.