Physiology of gamma-aminobutyric acid treated <i>Capsicum annuum</i> L. (Sweet pepper) under induced drought stress


Iqbal B., Hussain F., khan M. S., Iqbal T., Shah W., Ali B., ...Daha Fazla

PLOS ONE, cilt.18, sa.8, 2023 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 18 Sayı: 8
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1371/journal.pone.0289900
  • Dergi Adı: PLOS ONE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Agricultural & Environmental Science Database, Animal Behavior Abstracts, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, Chemical Abstracts Core, Food Science & Technology Abstracts, Index Islamicus, Linguistic Bibliography, MEDLINE, Pollution Abstracts, Psycinfo, zbMATH, Directory of Open Access Journals
  • Atatürk Üniversitesi Adresli: Evet

Özet

There is now widespread agreement that global warming is the source of climate variability and is a global danger that poses a significant challenge for the 21(st) century. Climate crisis has exacerbated water deficit stress and restricts plant's growth and output by limiting nutrient absorption and raising osmotic strains. Worldwide, Sweet pepper is among the most important vegetable crops due to its medicinal and nutritional benefits. Drought stress poses negative impacts on sweet pepper (Capsicum annuum L.) growth and production. Although, gamma aminobutyric acid (GABA) being an endogenous signaling molecule and metabolite has high physio-molecular activity in plant's cells and could induce tolerance to water stress regimes, but little is known about its influence on sweet pepper development when applied exogenously. The current study sought to comprehend the effects of foliar GABA application on vegetative development, as well as physiological and biochemical constituents of Capsicum annuum L. A Field experiment was carried out during the 2021 pepper growing season and GABA (0, 2, and 4mM) concentrated solutions were sprayed on two Capsicum annuum L. genotypes including Scope F1 and Mercury, under drought stress of 50% and 30% field capacity. Results of the study showed that exogenous GABA supplementation significantly improved vegetative growth attributes such as, shoot and root length, fresh and dry weight, as well as root shoot ratio (RSR), and relative water content (RWC) while decreasing electrolyte leakage (EL). Furthermore, a positive and significant effect on chlorophyll a, b, a/b ratio and total chlorophyll content (TCC), carotenoids content (CC), soluble protein content (SPC), soluble sugars content (SSC), total proline content (TPC), catalase (CAT), and ascorbate peroxidase (APX) activity was observed. The application of GABA at 2mM yielded the highest values for these variables. In both genotypes, peroxidase (POD) and superoxide dismutase (SOD) content increased with growing activity of those antioxidant enzymes in treated plants compared to non-treated plants. In comparison with the rest of GABA treatments, 2mM GABA solution had the highest improvement in morphological traits, and biochemical composition. In conclusion, GABA application can improve development and productivity of Capsicum annuum L. under drought stress regimes. In addition, foliar applied GABA ameliorated the levels of osmolytes and the activities of antioxidant enzymes involved in defense mechanism.