Becker's myotonia: novel mutations and clinical variability in patients born to consanguineous parents


ŞAHİN İ., ERDEM H. B., TAN H., TATAR A.

ACTA NEUROLOGICA BELGICA, cilt.118, sa.4, ss.567-572, 2018 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 118 Sayı: 4
  • Basım Tarihi: 2018
  • Doi Numarası: 10.1007/s13760-018-0893-0
  • Dergi Adı: ACTA NEUROLOGICA BELGICA
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.567-572
  • Atatürk Üniversitesi Adresli: Evet

Özet

Myotonia congenita is an inherited muscle disease present from childhood that is characterized by impaired muscle relaxation after contraction resulting in muscle stiffness; moreover, skeletal striated muscle groups may be involved. Myotonia congenita occurs due to chloride (Cl) channel mutations that reduce the stabilizing Cl conductance, and it is caused by mutations in the CLCN1 gene. This paper describes four patients from two different healthy consanguineous Turkish families with muscle stiffness and easy fatigability. A genetic investigation was performed. Mutation analyses showed a homozygous p.Tyr150* (c.450C>A) mutation in patients 1, 2 and 3 and a homozygous p.Leu159Cysfs*11 (c.475delC) mutation in patient 4 in the CLCN1 gene. These mutations have never been reported before and in silico analyses showed that the mutations were disease causing. They may be predicted to cause nonsense-mediated mRNA decay. Our data expand the spectrum of CLCN1 mutations and provide insights for genotype-phenotype correlations of myotonia congenita.