Bacterial MgSe complex nanoparticle synthesis and electrical characterization of fabricated Ag/MgSe/p-Si hetero-structure under dark and illumination


Çakıcı T., Özdal Ö. G., Almousa N., Yıldız F., Perişanoğlu E., Khalil H., ...Daha Fazla

Heliyon, cilt.9, sa.11, 2023 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 9 Sayı: 11
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1016/j.heliyon.2023.e21678
  • Dergi Adı: Heliyon
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, CAB Abstracts, Food Science & Technology Abstracts, Veterinary Science Database, Directory of Open Access Journals
  • Anahtar Kelimeler: Bacterial synthesis, C–V, I–V, MgSe, Nanoparticles, Thin film
  • Atatürk Üniversitesi Adresli: Evet

Özet

The Pseudomonas aeruginosa OG1 strain was used in the bacterial synthesis of MgSe compound nanoparticles. The obtained samples were subsequently shaped into nanocrystalline MgSe films, and their optical, structural, morphological, and electrical properties were assessed on glass and p-Si substrates. Structural and morphological characterizations showed that the fabricated thin film samples have a polycrystalline structure with high quality and uniform grain sizes. The MgSe films produced on glass substrates exhibit a direct spectral band gap of 2.53 eV, according to optical measurements. The Ag/MgSe/p-Si layered diode structure was fabricated using the produced MgSe nanoparticles and then characterized by electrical properties. Electrical measurements were carried out under these two conditions to assess the effects of dark and illumination conditions on the band dynamics of the heterostructure devices. Under illumination, the barrier height decreased while the interface density states distribution increased. These measurements showed that using bacterial-assisted grown MgSe nanocrystalline films, the developed Ag/MgSe/p-Si device structure exhibited a remarkable photoresponse and stable rectifying property. Green synthesis methods for the production of these nanocrystalline materials have the potential to offer low-cost alternatives for photosensitive applications.