JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY, cilt.62, sa.5, ss.575-582, 2011 (SCI-Expanded)
Ischemia is defined as cell death caused by insufficient perfusion of the tissue due to reduction in arterial or venous blood flow, depletion of cellular energy storages, and accumulation of toxic metabolites. The positive effects of controlled reperfusion are known and are used clinically. But the positive effects of controlled reperfusion on ovarian tissue have not been seen in the literature yet. The biochemical and histopathological comparative investigation of rat ovaries that were experimentally exposed to ischemia (IG), ischemia-reperfusion (I/R), and ischemia-controlled reperfusion (ICR) was aimed. Forthy rats were divided into four groups (10 rats per group). First group: 3 h ischemia by vascular clips on ovarian tissue. Second group: 3 h ischemia + 1 h reperfusion. Third group: 3 h ischemia + 1 h controlled reperfusion (on-off method: controlled reperfusion by opening and closing the clips (on/off) in 10-second intervals, for 5 times for a total of 100 seconds). Fourth group: healthy rats. Biochemical (tGSH, MDA, and DNA damage level and SOD activity) and histopathological analysis were performed. The highest glutathione and superoxide dismutase measurements were found in ischemia/controlled reperfusion group among the ischemia or ischemia/reperfusion groups. Similarly the damage indicators (malondialdehyde, DNA damage level and histopathological damage grade) were the lowest in ischemia/controlled reperfusion group. These results indicate that controlled reperfusion can be helpful in minimizing ischemia-reperfusion injury in ovarian tissue exposed to ischemia for various reasons (ovarian torsion, tumor, etc.).