APPLIED ORGANOMETALLIC CHEMISTRY, cilt.33, sa.5, 2019 (SCI-Expanded)
We present herein a new nanocatalyst, namely binary CuPt alloy nanoparticles (NPs) supported on reduced graphene oxide (CuPt-rGO), as a highly active heterogeneous catalyst for the transfer hydrogenation (TH) protocol that is demonstrated to be applicable over the reduction of various unsaturated organic compounds (olefins, aldehydes/ketones and nitroarenes) in aqueous solutions at room temperature. CuPt alloy NPs were synthesized by the co-reduction of metal (II) acetylacetonates by borane-tert-butylamine (BTB) complex in hot oleylamine (OAm) solution and then assembled on reduced graphene oxide (rGO) via ultrasonic-assisted liquid phase self-assembly method. The structure of yielded CuPt NPs and CuPt-rGO nanocatalyst were characterized by TEM, XRD and ICP-MS. The activity of Cu7Pt3-rGO nanocatalysts were then tested for the THs that were conducted in a commercially available high-pressure tube using water as sole solvent and ammonia borane as a hydrogen donor at room temperature. The presented catalytic TH protocol was successfully applied over nitroarenes, olefines and aldehydes/ketones, and all the tested compounds were converted to corresponding reduction products with the yields reaching up to 99% under ambient conditions. Moreover, the Cu7Pt3-rGO nanocatalyst was also reusable in the TH by providing 99% yield after five consecutive runs in TH of nitrobenzene as an example.