The effect of population and tourism factors on Covid-19 cases in Italy: Visual data analysis and forecasting approach


Uguz S., Yağanoğlu M., Özyer B., Tümüklü Özyer G., Tokdemir G.

CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, cilt.34, sa.6, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 34 Sayı: 6
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1002/cpe.6774
  • Dergi Adı: CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Applied Science & Technology Source, Communication Abstracts, Compendex, Computer & Applied Sciences, INSPEC, Metadex, zbMATH, Civil Engineering Abstracts
  • Anahtar Kelimeler: coronavirus, Covid-19, forecasting method, visual data analysis, VISUALIZATION, ARIMA
  • Atatürk Üniversitesi Adresli: Evet

Özet

At the beginning of 2020, the new coronavirus disease (Covid-19), a deadly viral illness, is declared as a public health emergency situation by WHO. Consequently, it is accepted as pandemic that affected millions of people worldwide. Italy is one of the most affected countries by Covid-19 disease among the world. In this article, our main goal is to investigate the effect of intensity of Covid-19 cases based on the population size and tourism factors in certain regions of Italy by visual data analysis. The regions of Lombardia, Veneto, Campania, Emilia-Romagna, Piemonte are the top five regions covering 58.50% of the total Covid-19 cases diagnosed in Italy. It has been shown by visual data analysis that population and tourism factors play an important role in the spread of Covid-19 cases in these five regions. In addition, a prediction model was created using Bi-LSTM and ARIMA algorithms to forecast the number of Covid-19 cases occurring in these five regions in order to take early action. We can conclude that these northern regions have been affected mostly by Covid-19 and the distribution of the resident population and tourist flow factors affected the number of Covid-19 cases in Italy.