Borax attenuates oxidative stress, inflammation, and apoptosis by modulating Nrf2/ROS balance in acrylamide-induced neurotoxicity in rainbow trout


TÜRKEZ H., ALAK G., ÖZGERİŞ F. B., Cilingir Yeltekin A., UÇAR A., PARLAK V., ...Daha Fazla

DRUG AND CHEMICAL TOXICOLOGY, 2024 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1080/01480545.2024.2370916
  • Dergi Adı: DRUG AND CHEMICAL TOXICOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, CAB Abstracts, Chemical Abstracts Core, EMBASE, Environment Index, Food Science & Technology Abstracts, International Pharmaceutical Abstracts, Veterinary Science Database
  • Atatürk Üniversitesi Adresli: Evet

Özet

Acrylamide (ACR) can have adverse environmental effects because of its multiple applications. Relevant scientific literatures of the existence of ACR residues in foods following processing steps have raised concern in the biochemistry, chemistry and safety of this vinyl substance. The interest has focused on the hepatotoxicity of ACR in animals and humans and on the ACR content mitigation and its detoxification. Borax (BX), as a naturally occurring antioxidant featured boron compound, was selected in this investigation to assess its possible neuro-protective potential against ACR-induced neurotoxicity. Nrf2 axis signaling pathways and detoxification response to oxidative stress after exposure to ACR in brains of rainbow trout, and the effect of BX application on reducing ACR-induced neurotoxicity were investigated. Rainbow trout were acutely exposed to ACR (12.5 mg/L) alone or simultaneously treated with BX (0.75 mg/L) during 96h. The exposed fish were sampled at 48th and 96th and oxidative stress response endpoints, 8-OHdG, Nrf2, TNF-alpha, caspase-3, in addition to IL-6 activities and the levels of AChE and BDNF in brain tissues of rainbow trout (Oncorhynchus mykiss) were evaluated. Samples showed decreases in the levels of ACR-mediated biomarkers used to assess neural toxicity (SOD, CAT, GPx, AChE, BDNF, GSH), increased levels of MDA, MPO, DNA damage and apoptosis. ACR disrupted the Nrf2 pathway, and induced neurotoxicity. Inhibited activities' expressions under simultaneous administration experiments, revealed the protective effects of BX against ACR-induced toxicity damage. The obtained data allow the outline of early multi-parameter signaling pathways in rainbow trout