The regulatory effects of pomiferin dietary on nickel-induced hepatic injury in Sprague-Dawley rats; action mechanisms and signaling pathways


Creative Commons License

Yıldız Deniz G., Geyikoğlu F., Altun S.

TOXICOLOGY MECHANISMS AND METHODS, cilt.34, sa.5, 2024 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 34 Sayı: 5
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1080/15376516.2023.2301667
  • Dergi Adı: TOXICOLOGY MECHANISMS AND METHODS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, Chemical Abstracts Core, Environment Index, Food Science & Technology Abstracts, MEDLINE, Veterinary Science Database
  • Anahtar Kelimeler: Apoptosis, DNA damage, nickel toxicity, platelet aggregation, pomiferin
  • Atatürk Üniversitesi Adresli: Evet

Özet

The new technological applications of nickel (Ni) raise concerns over its harmful effects on the environment and human health. Pomiferin isolated from Osage orange is evaluated in in vitro and in vivo laboratory bioassays. This study focused the effects of pomiferin on Ni-caused hepatic injury and its underlying mechanisms. With this aim, Sprague-Dawley rats received 10 mg/kg nickel chloride (NiCl2) for 7 d by intraperitoneal injections. Pomiferin was given orally once a day at different doses (75, 150, and 300 mg/kg) for 20 d after exposure to NiCl2. Animals were anesthetized and livers were carefully collected to evaluate oxidative stress, inflammation, vascular injury, and hepatic function. Also, immunofluorescence analysis of apoptosis and DNA damage was performed on rat hepatic tissues. NiCl2 increased MDA production while reducing SOD, CAT, and GPx activity. NiCl2 induced the production of inflammatory cytokines and also platelet activation in hepatic tissue. Moreover, there were significant increases in AST, ALT, and LDH levels. NiCl2 also caused significant pathological changes in hepatic. Additionally, it remarkably induced up-regulations of apoptotic marker and 8-OHdG expressions by immunofluorescence labeling in liver cells. Whereas, pomiferin significantly attenuated lipid peroxidation and increased antioxidant defense system in liver. Also, the use of pomiferin prevented deregulated inflammatory process by signaling pathways nuclear factor kappa B (NF kappa B)/COX-2/TNF-alpha/IL-1 beta/IL-6. In addition, pomiferin diminished histopathologic evidence of hepatic toxicity and significantly lower expressions of caspase 3 and 8-OHdG were observed in liver cells. Pomiferin seems to counteract the deleterious effects of NiCl2 on hepatic tissue through different cellular and signaling mechanisms. NiCl2 induced the production of inflammatory cytokines and also platelet activation in hepatic tissue.NiCl2 increased MDA production while reducing SOD, CAT, and GPx activity.NiCl2 induced the production of inflammatory cytokines and also platelet activation in hepatic tissue.NiCl2 caused significant pathological changes in the liver and also up-regulation of apoptotic marker and 8-OHdG expressions by immunofluorescence staining.Pomiferin attenuated lipid peroxidation and increased antioxidant defense system in liver.The use of pomiferin prevented deregulated inflammatory process by signaling pathways nuclear factor kappa B (NF kappa B)/COX-2/TNF-alpha/IL-1 beta/IL-6.Pomiferin diminished histopathologic evidence of hepatic toxicity and significantly lower expressions of caspase 3 and 8-OHdG were observed in liver cells.Pomiferin seems to counteract the deleterious effects of NiCl2 on hepatic tissue through different cellular and signaling mechanisms and thus can be used as a therapeutic practice against metal toxicity.