Olive leaf extract modulates permethrin induced genetic and oxidative damage in rats


TÜRKEZ H., Togar B., POLAT E.

CYTOTECHNOLOGY, cilt.64, sa.4, ss.459-464, 2012 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 64 Sayı: 4
  • Basım Tarihi: 2012
  • Doi Numarası: 10.1007/s10616-011-9424-z
  • Dergi Adı: CYTOTECHNOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.459-464
  • Anahtar Kelimeler: Permethrin, Olive leaf extract, Chromosomal aberrations, Micronucleus, Total antioxidant capacity, Total oxidant status, IN-VITRO, ANTIOXIDANT, STRESS, CYPERMETHRIN, GENOTOXICITY, INSECTICIDE, INDUCTION, EXPOSURE, LEAVES
  • Atatürk Üniversitesi Adresli: Evet

Özet

Permethrin is a common synthetic chemical, widely used as an insecticide in agriculture and other domestic applications. The previous reports indicated that permethrin is a highly toxic synthetic pyrethroid pesticide to human and environmental health. Therefore, the present experiment was undertaken to determine the effectiveness of olive leaf extract in modulating the permethrin induced genotoxic and oxidative damage in rats. The animals used were broadly divided into four (A, B, C and D) experimental groups. Group A rats served as control animals and received distilled water intraperitoneally (n = 5). Groups B and C rats received intraperitoneal injections of permethrin (60 mg kg(-1) b.w) and olive leaf extract (500 mg kg(-1) b.w), respectively. Group D rats received permethrin (60 mg kg(-1) b.w) plus olive leaf extract (500 mg kg(-1) b.w). Rats were orally administered their respective feed daily for 21 days. At the end of the experiment rats were anesthetized and serum and bone marrow cell samples were obtained. Genotoxic damage was assessed by micronucleus and chromosomal aberration assays. Total antioxidant capacity and total oxidant status were also measured in serum samples to assess oxidative status. Treatment of Group B with permethrin resulted in genotoxic damage and increased total oxidant status levels. Permethrin treatment also significantly decreased (P < 0.05) total antioxidant capacity level when compared to Group A rats. Group C rats showed significant increases (P < 0.05) in total antioxidant capacity level and no alterations in cytogenetic parameters. Moreover, simultaneous treatments with olive leaf extract significantly modulated the toxic effects of permethrin in Group D rats. It can be concluded that olive leaf extract has beneficial influences and could be able to antagonize permethrin toxicity. As a result, this investigation clearly revealed the protective role of olive leaf extract against the genetic and oxidative damage by permethrin in vivo for the first time.