CF-PEEK vs. Titanium Dental Implants: Stress Distribution and Fatigue Performance in Variable Bone Qualities


POLAT SAĞSÖZ N., Murat F., SEVİNÇ GÜL S. N., Şensoy A. T., Kaymaz I.

Biomimetics, cilt.10, sa.9, 2025 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 10 Sayı: 9
  • Basım Tarihi: 2025
  • Doi Numarası: 10.3390/biomimetics10090619
  • Dergi Adı: Biomimetics
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Directory of Open Access Journals
  • Anahtar Kelimeler: bone density, CF-PEEK, dental implants, fatigue analysis, finite element analysis (FEA)
  • Atatürk Üniversitesi Adresli: Evet

Özet

This study aims to evaluate the biomechanical behavior of titanium and carbon fiber-reinforced polyetheretherketone (CF-PEEK) dental implants under varying bone densities and loading conditions using finite element analysis (FEA). A single-tooth mandibular molar implant system was modeled, comprising titanium or CF-PEEK abutment and fixture, and surrounding bone structures with four configurations: (I) fully cortical bone, (II) 2 mm cortical layer with trabecular bone, (III) 1 mm cortical with high-density trabecular bone, and (IV) 1 mm cortical with low-density trabecular bone. Vertical and oblique static loads of 100 N were applied to simulate masticatory forces. FEA results revealed that titanium implants exhibited higher von Mises stress values in the implant and abutment under oblique loading, exceeding 400 MPa, while CF-PEEK components showed reduced stress but significantly higher strain levels. Cortical and trabecular bone surrounding CF-PEEK implants received more uniform stress distribution, potentially minimizing stress shielding effects. However, fatigue life analyses indicated that CF-PEEK abutment and screw components were more susceptible to mechanical failure under oblique loads, particularly in low-density bone models. In conclusion, CF-PEEK implants offer a more physiological load transfer to bone and reduced stress shielding compared to titanium. However, their structural reliability under complex loading, especially in low-quality bone conditions, requires careful consideration. These findings support the potential use of CF-PEEK in select clinical scenarios but highlight the need for further material and design optimization.