Transcriptomic analysis of bakanae disease resistant and susceptible rice genotypes in response to infection by Fusarium fujikuroi


Creative Commons License

Bashyal B. M., Rawat K., Parmar P., Gupta A. K., Gupta S., Krishnan S. G., ...Daha Fazla

MOLECULAR BIOLOGY REPORTS, cilt.49, sa.12, ss.11959-11972, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 49 Sayı: 12
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1007/s11033-022-07877-1
  • Dergi Adı: MOLECULAR BIOLOGY REPORTS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, Chemical Abstracts Core, EMBASE, MEDLINE, Veterinary Science Database
  • Sayfa Sayıları: ss.11959-11972
  • Anahtar Kelimeler: Bakanae, Rice, Resistant, Fusarium fujikuroi, RNA-Seq, GENETIC DIVERSITY, EMERGING DISEASE, EXPRESSION, PROTEIN, PCR
  • Atatürk Üniversitesi Adresli: Evet

Özet

Background Fusarium fujikuroi causing bakanae is one of the most significant pathogens of rice and much responsible for yield losses thereby emerging as a major risk to food security. Methods In the present study transcriptomic analysis was conducted between two contrasting resistant (C101A51) and susceptible (Rasi) genotypes of rice with the combinations of C101A51 control (CC) vs. C101A51 inoculated (CI); Rasi control (RC) vs. Rasi inoculated (RI) and C101A51 inoculated (CI) vs. Rasi inoculated (RI). Results In CC vs. CI commonly expressed genes were 12,764. Out of them 567 (4%) were significantly upregulated and 1399 (9%) genes were downregulated. For the RC vs. RI 14, 333 (79%) genes were commonly expressed. For CI vs. RI 13,662 (72%) genes were commonly expressed. Genes related to cysteine proteinase inhibitor 10, disease resistance protein TAO1-like, oleosin 16 kDa-like, pathogenesis-related protein (PR1), (PR4), BTB/POZ and MATH domain-containing protein 5-like, alpha-amylase isozyme were upregulated in resistant genotype C101A51. Whereas, genes related to GDSL esterase/lipase, serine glyoxylate aminotransferase, CASP-like protein 2C1, WAT1-related protein, Cytoplasmic linker associated proteins, xyloglucan endotransglucosylase/hydrolase protein and beta-D xylosidase 7 were upregulated in susceptible genotype Rasi. Gene ontology analysis showed functions related to defence response (GO:0006952), regulation of plant hypersensitive type response (GO:0010363), Potassium ion transmembrane activity (GO:0015079), chloroplast (GO:0009507), response to wounding (GO:0009611), xylan biosynthetic process (GO:0045492) were upregulated in resistant genotype C101A51 under inoculated conditions. Conclusion Real time PCR based validation of the selected DEGs showed that the qRT-PCR was consistent with the RNA-Seq results. This is the first transcriptomic study against bakanae disease of rice in Indian genotypes. Further, functional studies on identified genes and their utilization through different methodology will be helpful for the development of bakanae disease management strategies.